[1] Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462.doi:10.1038/nature11917. [2] Zhang W F, Cao G X, Li X L, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X. Closing yield gaps in China by empowering smallholder farmers[J]. Nature, 2016, 537(7622):671-674.doi:10.1038/nature19368. [3] Bloom A J, Sukrapanna S S, Warner R L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley[J]. Plant Physiology, 1992, 99(4):1294-1301.doi:10.1104/pp.99.4.1294. [4] Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer W B, von WirñN. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. The Plant Cell, 1999, 11(5):937-947.doi:10.1105/tpc.11.5.937. [5] Britto D T, Kronzucker H J. NH4+ toxicity in higher plants:a critical review[J]. Journal of Plant Physiology, 2002, 159(6):567-584.doi:10.1078/0176-1617-0774. [6] Hao D L, Zhou J Y, Yang S Y, Qi W, Yang K J, Su Y H. Function and regulation of ammonium transporters in plants[J]. International Journal of Molecular Sciences, 2020, 21(10):3557.doi:10.3390/ijms21103557. [7] Koegel S, Ait Lahmidi N, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wiemken A, Courty P E. The family of ammonium transporters(AMT) in Sorghum bicolor:Two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi[J]. The New Phytologist, 2013, 198(3):853-865.doi:10.1111/nph.12199. [8] Rawat S R, Silim S N, Kronzucker H J, Siddiqi M Y, Glass A D M. AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana:Evidence for regulation by root glutamine levels[J]. The Plant Journal, 1999, 19(2):143-152.doi:10.1046/j.1365-313x.1999.00505.x. [9] Sonoda Y, Ikeda A, Saiki S, Wirén N V, Yamaya T, Yamaguchi J. Distinct expression and function of three ammonium transporter genes(OsAMT1; 1-1; 3) in rice[J]. Plant and Cell Physiology, 2003, 44(7):726-734.doi:10.1093/pcp/pcg083. [10] Sohlenkamp C, Wood C C, Roeb G W, Udvardi M K. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane[J]. Plant Physiology, 2002, 130(4):1788-1796.doi:10.1104/pp.008599. [11] Yuan L X, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wireén N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. The Plant Cell, 2007, 19(8):2636-2652.doi:10.1105/tpc.107.052134. [12] Yuan L X, Graff L, Loqu D, Kojima S, Tsuchiya Y N, Takahashi H, von Wirén N. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis[J]. Plant and Cell Physiology, 2009, 50(1):13-25.doi:10.1093/pcp/pcn186. [13] Giehl R F H, Laginha A M, Duan F Y, Rentsch D, Yuan L X, von Wirén N. A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis[J]. Molecular Plant, 2017, 10(11):1449-1460.doi:10.1016/j.molp.2017.10.001. [14] Duan F Y, Giehl R F H, Geldner N, Salt D E, von Wirén N. Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots[J]. PLoS Biology, 2018, 16(10):e2006024.doi:10.1371/journal.pbio.2006024. [15] Li C, Tang Z, Wei J, Qu H Y, Xie Y J, Xu G H. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges[J]. Journal of Genetics and Genomics, 2016, 43(11):639-649.doi:10.1016/j.jgg.2016.11.001. [16] Lauter F R, Ninnemann O, Bucher M, Riesmeier J W, Frommer W B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15):8139-8144.doi:10.1073/pnas.93.15.8139. [17] Von Wirén N, Lauter F R, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer W B. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato[J]. The Plant Journal, 2000, 21(2):167-175.doi:10.1046/j.1365-313x.2000.00665.x. [18] Simon-Rosin U, Wood C, Udvardi M K. Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus[J]. Plant Molecular Biology, 2003, 51(1):99-108.doi:10.1023/a:1020710222298. [19] Gu R L, Duan F Y, An X, Zhang F S, von Wirén N, Yuan L X. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize(Zea mays L.) [J]. Plant & Cell Physiology, 2013, 54(9):1515-1524.doi:10.1093/pcp/pct099. [20] Bajgain P, Russell B, Mohammadi M. Phylogenetic analyses and in-seedling expression of ammonium and nitrate transporters in wheat[J]. Scientific Reports, 2018, 8(1):7082.doi:10.1038/s41598-018-25430-8. [21] Sun Y C, Sheng S, Fan T F, Liu L, Ke J, Wang D B, Hua J P, Liu L H, Cao F Q. Molecular identification and functional characterization of GhAMT1.3 in ammonium transport with a high affinity from cotton(Gossypium hirsutum L.) [J]. Physiologia Plantarum, 2019, 167(2):217-231.doi:10.1111/ppl.12882. [22] Wu X Y, Yang H, Qu C P, Xu Z R, Li W, Hao B Q, Yang C P, Sun G Y, Liu G J. Sequence and expression analysis of the AMT gene family in poplar[J]. Front Plant Sci, 2015, 6:337.doi:10.3389/fpls.2015.00337. [23] 李磊, 罗杰, 李红, 罗志斌. 毛果杨全基因组铵转运蛋白家族成员及其序列分析[J]. 西北农林科技大学学报(自然科学版), 2011, 39(2):133-142.doi:10.13207/j.cnki.jnwafu.2011.02.023. Li L, Luo J, Li H, Luo Z B. Genome-wide analysis of the ammonium transporter gene family in Populus trichocarpa[J]. Journal of Northwest A&F University(Nat Sci Ed), 2011, 39(2):133-142. [24] 汪玉洁, 陈日远, 刘厚诚, 宋世威, 孙光闻. 生菜AMT1 基因克隆及其在TiO2/ZnO纳米材料处理下的表达[J]. 核农学报, 2018, 32(4):665-672.doi:10.11869/j.issn.100-8551.2018.04.0665. Wang Y J, Chen R Y, Liu H C, Song S W, Sun G W. Molecular cloning and expression analysis of LsAMT1 gene from lettuce under TiO2/ZnO nanomaterials[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(4):665-672. [25] Castro-Rodríguez V, Assaf-Casals I, Pérez-Tienda J, Fan X, Avila C, Miller A, Cánovas F M. Deciphering the molecular basis of ammonium uptake and transport in maritime pine[J]. Plant Cell and Environment, 2016, 39(8):1669-1682.doi:10.1111/pce.12692. [26] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, et al. Plant genetics. early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199):950-953.doi:10.1126/science.1253435. [27] Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, Xie W Z, Cheng Y F, Zhang Y T, Liu K D, Yang Q Y, Chen L L, Guo L. Eight high-quality genomes reveal Pan-genome architecture and ecotype differentiation of Brassica napus[J]. Nature Plants, 2020, 6(1):34-45.doi:10.1038/s41477-019-0577-7. [28] Bouchet A S, Laperche A, Bissuel-Belaygue C, Snowdon R, Nesi N, Stahl A. Nitrogen use efficiency in rapeseed. A review[J]. Agronomy for Sustainable Development, 2016, 36(2):38.doi:10.1007/s13593-016-0371-0. [29] Esteban R, Ariz I, Cruz C, Moran J F. Review:Mechanisms of ammonium toxicity and the quest for tolerance[J]. Plant Science, 2016, 248:92-101.doi:10.1016/j.plantsci.2016.04.008. [30] Wang F, Gao J W, Liu Y, Tian Z W, Muhammad A, Zhang Y X, Jiang D, Cao W X, Dai T B. Higher ammonium transamination capacity can alleviate glutamate inhibition on winter wheat(Triticum aestivum L.) root growth under high ammonium stress[J]. PLoS One, 2016, 11(8):e0160997.doi:10.1371/journal.pone.0160997. [31] Wang F, Gao J W, Tian Z W, Liu Y, Abid M, Jiang D, Cao W X, Dai T B. Adaptation to rhizosphere acidification is a necessary prerequisite for wheat(Triticum aestivum L.) seedling resistance to ammonium stress[J]. Plant Physiology and Biochemistry, 2016, 108:447-455.doi:10.1016/j.plaphy.2016.08.011. [32] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkin M R, Appel R, Bairoch A. Protein identification and analysis tools on the ExPASy server[M]//Walker J M. The proteomics protocols handbook.Totowa, NJ:Humana Press, 2005:571-607. [33] Wang X B, Wu J, Liang J L, Cheng F, Wang X W. Brassica database(BRAD) version 2.0:integrating and mining Brassicaceae species genomic resources[J]. Database, 2015, 20:1-8.doi:10.1093/database/bav093. [34] Hofmann K, Stoffel W. TMbase-A database of membrane spanning protein segments[J]. Biological Chemistry Hoppe-Seyler, 1993, 374(166):166.doi:10.1056/NEJM199001043220121. [35] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21):2947-2948.doi:10.1093/bioinformatics/btm404. [36] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.doi:10.1093/molbev/mst197. [37] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37:W202-W208.doi:10.1093/nar/gkp335. [38] Combet C, Blanchet C, Geourjon C, Deléage G. Network protein sequence analysis[J]. Trends in Biochemical Sciences, 2000, 25(3):147-150.doi:10.1016/s0968-0004(99) 01540-6. [39] Buchan D W A, Minneci F, Nugent T C O, Bryson K, Jones D T. Scalable web services for the PSIPRED protein analysis workbench[J]. Nucleic Acids Research, 2013, 41:W349-W357.doi:10.1093/nar/gkt381. [40] Mezulis S, Sternberg M J E, Kelley L A. PhyreStorm:A web server for fast structural searches against the PDB[J]. Journal of Molecular Biology, 2016, 428(4):702-708.doi:10.1016/j.jmb.2015.10.017. [41] Smith T F, Waterman M S. Identification of common molecular subsequences[J]. Journal of Molecular Biology, 1981, 147(1):195-197.doi:10.1016/0022-2836(81) 90087-5. [42] Hoagland D R, Arnon D I. The water culture method for growing plants without soil[J]. California Agricultural Experimental Station Bulletin, 1950, 347:32.doi:10.1016/S0140-6736(00) 73482-9. [43] Letunic I, Copley R R, Schmidt S, Ciccarelli F D, Doerks T, Schultz J, Ponting C P, Bork P. SMART 4.0:Towards genomic data integration[J]. Nucleic Acids Research, 2004, 32(Database issue):D142-D144.doi:10.1093/nar/gkh088. [44] Guruprasad K, Reddy B V B, Pandit M W. Correlation between stability of a protein and its dipeptide composition:A novel approach for predicting in vivo stability of a protein from its primary sequence[J]. Protein Engineering, Design and Selection, 1990, 4(2):155-161.doi:10.1093/protein/4.2.155. [45] von Wirén N, Gazzarrini S, Gojon A, Frommer W B. The molecular physiology of ammonium uptake and retrieval[J]. Current Opinion in Plant Biology, 2000, 3(3):254-261. [46] The International Wheat Genome Sequencing Consortium(IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum) genome[J]. Science, 2014, 345(6194):1251788.doi:10.1126/science.1251788. [47] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, et al.Genome sequence of cultivated upland cotton(Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5):524-530.doi:10.1038/nbt.3208. [48] Jones D M, Wells R, Pullen N, Trick M, Irwin J A, Morris R J. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus[J]. The Plant Journal, 2018, 96(1):103-118.doi:10.1111/tpj.14020. [49] Conant G C, Wolfe K H. Turning a hobby into a job:how duplicated genes find new functions[J]. Nature Reviews Genetics, 2008, 9(12):938-950.doi:10.1038/nrg2482. [50] Otto S P. The evolutionary consequences of polyploidy[J]. Cell, 2007, 131(3):452-462.doi:10.1016/j.cell.2007.10.022. [51] Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use[J]. The New Phytologist, 2018, 217(1):35-53.doi:10.1111/nph.14876. [52] Yuan L X, Loqueé D, Ye F H, Frommer W B, von Wirén N. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1[J]. Plant Physiology, 2007, 143(2):732-744.doi:10.1104/pp.106.093237. [53] Ranathunge K, El-Kereamy A, Gidda S, Bi Y M, Rothstein S J. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions[J]. Journal of Experimental Botany, 2014, 65(4):965-979.doi:10.1093/jxb/ert458. [54] Zhu Y N, Huang X M, Hao Y W, Su W, Liu H C, Sun G W, Chen R Y, Song S W. Ammonium transporter(BcAMT1.2) mediates the interaction of ammonium and nitrate in Brassica campestris[J]. Frontiers in Plant Science, 2019, 10:1776.doi:10.3389/fpls.2019.01776. [55] Hu B, Jiang Z M, Wang W, Qiu Y H, Zhang Z H, Liu Y Q, Li A F, Gao X K, Liu L C, Qian Y W, Huang X H, Yu F F, Kang S, Wang Y Q, Xie J P, Cao S Y, Zhang L H, Wang Y C, Xie Q, Kopriva S, Chu C C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4):401-413.doi:10.1038/s41477-019-0384-1. [56] Camacho-Cristóbal J J, Rexach J, Herrera-Rodríguez M B, Navarro-Gochicoa M T, González-Fontes A. Boron deficiency and transcript level changes[J]. Plant Science, 2011, 181(2):85-89.doi:10.1016/j.plantsci.2011.05.001. [57] 陈宁美, 欧阳舒毓, 徐维烈, 唐帅, 韦善君, 冯金朝, 徐小静. 镉胁迫对盐芥根木栓质代谢的影响[J]. 河南农业科学, 2018, 47(10):105-110.doi:10.15933/j.cnki.1004-3268.2018.10.019. Chen N M, Ouyang S Y, Xu W L, Tang S, Wei S J, Feng J C, Xu X J. Effect of cadmium stress on metabolism of root suberin in Thellungiella salsuginea[J]. Journal of Henan Agricultural Sciences, 2018, 47(10):105-110. [58] 杨德翠, 徐青, 赵方贵, 柳冕, 刘新. NaCl对不同抗性水稻氮代谢及相关基因表达的影响[J]. 华北农学报, 2020, 35(2):187-195.doi:10.7668/hbnxb.20190507. Yang D C, Xu Q, Zhao F G, Liu M, Liu X. Effects of NaCl stress on nitrogen metabolism and related gene expression of rice with different resistance[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2):187-195. |