[1] Hasanuzzaman M, Hakeem K R, Nahar K, Alharby H F. Plant abiotic stress tolerance[M]. Cham:Springer, 2019.doi:10.1007/978-3-030-06118-0. [2] Negrão S, Schmöckel S M, Tester M. Evaluating physiological responses of plants to salinity stress[J]. Annals of Botany, 2017,119(1):1-11.doi:10.1093/aob/mcw191. [3] Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi H M, Alghamdi S S, Siddique K H M. Effects, tolerance mechanisms and management of salt stress in grain legumes[J]. Plant Physiology and Biochemistry, 2017, 118:199-217.doi:10.1016/j.plaphy.2017.06.020. [4] Flowers T J, Colmer T D. Plant salt tolerance:adaptations in halophytes[J]. Annals of Botany, 2015, 115(3):327-331.doi:10.1093/aob/mcu267. [5] 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J].山东农业科学, 2015(4):125-130.doi:10.14083/j.issn.1001-4942.2015.04.032. Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agricultural Sciences, 2015(4):125-130. [6] Wang J, Sun B G, Cao R T. Bioactive factors and processing technology for cereal foods[M]. Singapore:Springer, 2019.doi:10.1007/978-981-13-6167-8. [7] Zelm E V, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71(24):403-433.doi:10.1146/annurev-arplant-050718-100005. [8] Yin L N, Wang S W, Tanaka K, Fujihara S, Itai A, Den X P, Zhang S Q. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.[J]. Plant Cell and Environment, 2016, 39(2):245-258.doi:10.1111/pce.12521. [9] 王芸芸, 孙辉, 田涣玲, 赵越, 张振良, 徐扬, 李鹏程, 徐辰武. 玉米苗期根系相关性状的遗传差异分析[J].扬州大学学报(农业与生命科学版), 2020, 41(2):16-21.doi:10.16872/j.cnki.1671-4652.2020.02.003. Wang Y Y, Sun H, Tian H L, Zhao Y, Zhang Z L, Xu Y, Li P C, Xu C W. Genetic difference analysis for root traits in maize seedlings[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2020, 41(2):16-21. [10] 迟春明, 王志春, 李彬. 混合盐碱胁迫对帚用高粱萌发及苗期生长的影响[J].干旱地区农业研究, 2008,26(4):148-151. Chi C M, Wang Z C, Li B. Effects of complex alkali-saline stress on germination and seedling growth of broom sorghum(Sorghum bicolor (L.)Moench)[J]. Agricultural Research in the Arid Areas, 2008,26(4):148-151. [11] 张会慧,龙静泓,王均睿,吴绪叶,马松良,宁强,许楠.不同种类盐胁迫对高梁幼苗生长及叶片光合机构功能的影响[J].生态学杂志,2019,38(1):161-172.doi:10.13292/j.1000-4890.201901.019. Zhang H H, Long J H, Wang J R, Wu X Y, Ma S L, Ning Q, Xu N. Effects of different salt stress conditions on growth of sorghum seedlings and function of leaf photosynthetic apparatus[J]. Chinese Journal of Ecology, 2019,38(1):161-172. [12] Almodares A, Hadi M R, Dosti B. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars[J]. Journal of Biological Sciences, 2007, 7(8):1492-1495.doi:10.3923/jbs.2007.1492.1495. [13] Ndimba R J, Kruger J, Mehlo L, Barnabas A, Kossmann J, Ndimba B K. A comparative study of selected physical and biochemical traits of wild-type and transgenic sorghum to reveal differences relevant to grain quality[J]. Frontiers in Plant Science, 2017, 8:952.doi:10.3389/fpls.2017.00952. [14] Bandara Y M A Y, Tesso T T, Bean S R, Dowell F E, Little C R. Impacts of fungal stalk rot pathogens on physicochemical properties of sorghum grain[J]. Plant Disease, 2017, 101(12):2059-2065.doi:10.1094/PDIS-02-17-0238-RE. [15] Kaufman R C, Wilson J D, Bean S R, Galant A L, Perumal R R, Tesso T, Herald T, Shi Y C. Influence of genotype×location interaction on grain sorghum grain chemistry and digestibility[J]. Agronomy Journal, 2018, 110(5):1681-1688.doi:10.2134/agronj2017.09.0561. [16] Abdelhalim T S, Kamal N M, Hassan A B. Nutritional potential of wild sorghum:grain quality of sudanese wild sorghum genotypes(Sorghum bicolor L. Moench)[J]. Food Science and Nutrition, 2019,7(4):1529-1539.doi:10.1002/fsn3.1002. [17] Farhangi-Abriz S,Torabian S, Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 2017, 137:64-70.doi:10.1016/j.ecoenv.2016.11.029. [18] 张运红, 杨红燕, 杨占平,黄绍敏,和爱玲,杜君.不同叶面肥对花生光合特性与产量及氮吸收分配的影响[J].湖南农业大学学报(自然科学版), 2020, 46(4):386-392.doi:10.13331/j.cnki.jhau.2020.04.002. Zhang Y H, Yang H Y, Yang Z P, Huang S M, He A L, Du J. Effects of different foliar fertilization on photosynthetic characteristics, yield and nitrogen absorption and distribution of peanut[J]. Journal of Hunan Agricultural University(Natural Sciences), 2020, 46(4):386-392. [19] 邹春雷. 甜菜适应碱性盐胁迫的生理机制及其转录组分析[D].哈尔滨:东北农业大学, 2019. Zou C L. Physiological mechanism and transcriptome analysis of sugar beet(Beta vulgaris L.) in adaption to alkali-salt stress[D]. Harbin:Northeast Agricultural University, 2019. [20] 孙璐, 周宇飞, 汪澈, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 高粱品种萌发期耐盐性筛选与鉴定[J].中国农业科学, 2012, 45(9):1714-1722.doi:10.3864/j.issn.0578-1752.2012.09.006. Sun L, Zhou Y F, Wang C, Xiao M J, Tao Y, Xu W J, Huang R D. Screening and identification of sorghum cultivars for salinity tolerance during germination[J]. Scientia Agricultura Sinica, 2012, 45(9):1714-1722. [21] Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takate T, Takate T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Molecular Biology, 2000, 43(1):103-111.doi:10.1023/a:1006408712416. [22] 李旭新, 刘炳响, 郭智涛, 常越霞, 贺磊, 陈芳, 路丙社. NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化[J].应用生态学报, 2013,24(9):2479-2484.doi:10.13287/j.1001-9332.2013.0494. Li X X, Liu B X, Guo Z T, Chang Y X, He L, Chen F, Lu B S. Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves[J]. Chinese Journal of Applied Ecology, 2013,24(9):2479-2484. [23] 马翠兰. 柚(Citrus grandis Osbeck)对盐胁迫的生理反应及适应性研究[D]. 福州:福建农林大学, 2001.doi:10.7666/d.y451008. Ma C L. Study on the physiological response and adaptability of pomelo(Citrus grandis Osbeck) under salt stress[D]. Fuzhou:Fujian Agriculture and Forestry University, 2001. [24] Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganicion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress[J]. Photosynthetica, 2010, 48(1):127-134.doi:10.1007/s11099-010-0017-4. [25] 刘爱荣, 张远兵, 方园园, 李伟, 陈志扬. 盐胁迫对金盏菊生长、抗氧化能力和盐胁迫蛋白的影响[J].草业学报, 2011,20(6):52-59.doi:10.11686/cyxb20110607. Liu A R, Zhang Y B, Fang Y Y, Li W, Cheng Z Y. Effects of salt stress on the growth, antioxidant ability and salt stress protein of Calendula officinalis[J]. Acta Prataculturae Sinica, 2011,20(6):52-59. [26] 孙飞. 高粱杂交种耐盐性评价及耐盐生理机制研究[D]. 沈阳:沈阳农业大学, 2018. Sun F. Salt-tolerant hybrid sorghum evaluation and the physiological mechanisms of tolerances[D]. Shenyang:Shenyang Agricultural University, 2018. [27] 姜慧. 甜高粱对盐胁迫的生理生化响应[D].沈阳:沈阳师范大学, 2012.doi:10.7666/d.D361229. Jiang H. NaCl stress on the physiological and biochemical response with sweet sorghum[D]. Shenyang:Shenyang Normal University, 2012. [28] 孙彩霞, 沈秀瑛. 玉米根系生态型及生理活性与抗旱性关系的研究[J].华北农学报, 2002,17(3):20-24.doi:10.3321/j.issn:1000-7091.2002.03.004. Sun C X, Shen X Y. Study on the relationship between ecotype and physiological activity of roots system and drought resistance in maize[J]. Acta Agriculturae Boreali-sinica, 2002,17(3):20-24. [29] 周影. 盐分胁迫对小麦籽粒产量和品质形成的影响[D]. 扬州:扬州大学, 2007.doi:10.7666/d.y1103056. Zhou Y. Effects of salinity stress on wheat grain yield and quality formation[D]. Yangzhou:Yangzhou University, 2007. |