[1] |
Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10.Past successes and future challenges to the role played by wheat in global food security[J]. Food Security, 2013, 5(3):291—317.doi: 10.1007/s12571-013-0263-y.
|
[2] |
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling H Q, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China[J]. Science China Life Sciences, 2022, 65(9):1718—1775. doi: 10.1007/s11427-022-2178-7.
|
[3] |
Farooq J, Khaliq I, Akbar M, Petrescu-Mag I V, Hussain M. Genetic analysis of some grain yield and its attributes at high temperature stress in wheat(Triticum aestivum L.)[J]. Annals of the Romanian Society for Cell Biology, 2015, 19(3):71—81.
|
[4] |
Tshikunde N M, Mashilo J, Shimelis H, Odindo A. Agronomic and physiological traits,and associated quantitative trait loci(QTL)affecting yield response in wheat( Triticum aestivum L.):a review[J]. Frontiers in Plant Science, 2019, 10:1428.doi: 10.3389/fpls.2019.01428.
|
[5] |
王荣栋, 尹经章. 作物栽培学[M]. 北京: 高等教育出版社, 2005.
|
|
Wang R D, Yin J Z. Crop cultivation science[M]. Beijing: Higher Education Pessr, 2005.
|
[6] |
Khaliq I, Irshad A, Ahsan M. Awns and flag leaf contribution towards grain yield in spring wheat( Triticum aestivum L.)[J]. Cereal Research Communications, 2008, 36(1):65—76.doi: 10.1556/CRC.36.2008.1.7.
|
[7] |
Jantasuriyarat C, Vales M I, Watson C J W, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat( Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2004, 108(2):261—273.doi: 10.1007/s00122-003-1432-8.
pmid: 13679977
|
[8] |
Yu M, Mao S L, Chen G Y, Pu Z E, Wei Y M, Zheng Y L. QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level[J]. Euphytica, 2014, 200(1):95—108.doi: 10.1007/s10681-014-1156-7.
|
[9] |
Deng Z Y, Cui Y, Han Q D, Fang W Q, Li J F, Tian J C. Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages[J]. Frontiers in Plant Science, 2017, 8:2120.doi: 10.3389/fpls.2017.02120.
pmid: 29326735
|
[10] |
Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F 2 populations[J]. Molecular Genetics and Genomics, 2007, 277(1):31—42.doi: 10.1007/s00438-006-0166-0.
|
[11] |
侯立江. 小麦穗长性状的QTL分析[D]. 杨凌: 西北农林科技大学, 2015.
|
|
Hou L J. QTL analysis for wheat spike[D]. Yangling: Northwest A&F University, 2015.
|
[12] |
Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat( Triticum aestivum L.) showing pleiotropic effects on yield-related traits[J]. Theoretical and Applied Genetics, 2021, 134(11):3625—3641.doi: 10.1007/s00122-021-03918-8.
|
[13] |
Zhou Y P, Conway B, Miller D, Marshall D, Cooper A, Murphy P, Chao S, Brown-Guedira G, Costa J. Quantitative trait loci mapping for spike characteristics in hexaploid wheat[J]. The Plant Genome, 2017, 10(2):138—150.doi: 10.3835/plantgenome2016.10.0101.
|
[14] |
Liu J, Xu Z B, Fan X L, Zhou Q, Cao J, Wang F, Ji G S, Yang L, Feng B, Wang T. A genome-wide association study of wheat spike related traits in China[J]. Frontiers in Plant Science, 2018, 9:1584.doi: 10.3389/fpls.2018.01584.
pmid: 30429867
|
[15] |
Zhai H J, Feng Z Y, Li J, Liu X Y, Xiao S H, Ni Z F, Sun Q X. QTL analysis of spike morphological traits and plant height in winter wheat( Triticum aestivum L.) using a high-density SNP and SSR-based linkage map[J]. Frontiers in Plant Science, 2016, 7:1617.doi: 10.3389/fpls.2016.01617.
|
[16] |
唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8):1492—1502.doi: 10.3864/j.issn.0578-1752.2022.08.002.
|
|
Tang H P, Chen H X, Li C, Gou L L, Tan C, Mou Y, Tang L W, Lan X J, Wei Y M, Ma J. Unconditional and conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array[J]. Scientia Agricultura Sinica, 2022, 55(8):1492—1502.
doi: 10.3864/j.issn.0578-1752.2022.08.002
|
[17] |
|
|
Huang Q L. The scab resistance evaluation,QTL mapping and application in breeding of wheat L693 and its sister lines[D]. Yaan: Sichuan Agricultural University, 2020.
|
[18] |
|
|
Xu X, Zhang D H, Li X J, Li J, Hou Q X, Wu J K, Shi Y F. Detection of genetic loci associated with main agronomic characters of wheat cultivar Aikang 58[J]. Journal of Hebei Agricultural University, 2020, 43(6):1—5.
|
[19] |
李小军, 胡铁柱, 李淦, 姜小苓, 冯素伟, 董娜, 张自阳, 茹振钢, 黄勇. 小麦品种百农AK58及其姊妹系的遗传构成分析[J]. 作物学报, 2012, 38(3):436—446.doi: 10.3724/SP.J.1006.2012.00436.
|
|
Li X J, Hu T Z, Li G, Jiang X L, Feng S W, Dong N, Zhang Z Y, Ru Z G, Huang Y. Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines[J]. Acta Agronomica Sinica, 2012, 38(3):436—446.
|
[20] |
|
|
Zhao H S, Liu L F, Li C, Li X W, Qian G Z. Isolating DNA from Malus hupehensis rehd.var.mengshanensis leaves with different dry methods by 2 kinds of CTAB methods[J]. Journal of Anhui Agricultural Sciences, 2010, 38(5):2244—2245,2273.
|
[21] |
|
|
Li Y, Zou J J, Yu J, Xu Y, Xu M Y, Luo H F, Wang L. Construction of maize near-isogenic lines and its application[J]. Journal of Agricultural Science and Technology, 2019, 21(12):14—22.
doi: 10.13304/j.nykjdb.2019.0136
|
[22] |
Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314—331.
pmid: 6247908
|
[23] |
Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics:a platform combining multiple omics data to accelerate functional genomics studies in wheat[J]. Molecular Plant, 2021, 14(12):1965—1968.doi: 10.1016/j.molp.2021.10.006.
|
[24] |
|
|
Zhao C H, Cui F, Li J, Ding A M, Li X F, Gao J R, Wang H G. Genetic difference of siblines derived from winter wheat germplasm Aimengniu[J]. Acta Agronomica Sinica, 2011, 37(8):1333—1341.
|
[25] |
李凯丽, 耿明状, 王胜, 郝维浩, 卢杰, 陈璨, 司红起. 安农1687抗条锈病候选基因 TraesCS2A01G070700鉴定与分析[J]. 华北农学报, 2024, 39(1):150—155.doi: 10.7668/hbnxb.20194425.
|
|
Li K L, Geng M Z, Wang S, Hao W H, Lu J, Chen C, Si H Q. Identification and analysis on the resistance to stripe rust candidate gene of TraesCS2A01G070700 from wheat cultivar annong 1687[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):150—155.
|
[26] |
蒋素梅, 陶均, 李玲. 早期生长素响应蛋白在生长素信号转导中的作用[J]. 植物生理学通讯, 2005, 41(1):125—130.
|
|
Jiang S M, Tao J, Li L. The roles of early auxin response proteins in auxin signal transduction[J]. Plant Physiology Communications, 2005, 41(1):125—130.
|