[1] Giura A, Saulescu N N. Chromosomal location of genes controlling grain size in a large grained selection of wheat(Triticum aestivum L.)[J]. Euphytica, 1996, 89(1):77-80.doi:10.1007/BF00015722. [2] Kuchel H, Williams K J, Langridge P, Eagles H A, Jefferies S P. Genetic dissection of grain yield in bread wheat. I. QTL analysis[J]. Theoretical and Applied Genetics, 2007, 115(8):1029-1041.doi:10.1007/s00122-007-0629-7. [3] Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat[J]. The Plant Cell, 2012, 22(4):1046-1056.doi:10.1105/tpc.110.074153. [4] 吕广德, 孙宪印, 亓晓蕾, 王超, 王瑞霞, 孙盈盈, 牟秋焕, 米勇, 钱兆国, 吴科. 普通小麦粒重相关基因克隆的研究进展[J].麦类作物学报, 2017, 37(10):1301-1308.doi:10.7606/j.issn.1009-1041.2017.10.05. Lü G D, Sun X Y, Qi X L, Wang C, Wang R X, Sun Y Y, Mu Q H, Mi Y, Qian Z G, Wu K. Research progress of gene cloning related to grain weight in common wheat[J]. Journal of Triticeae Crops, 2017, 37(10):1301-1308. [5] 康艺维, 陈玉宇, 张迎信. 水稻粒型基因克隆研究进展及育种应用展望[J].中国水稻科学, 2020, 34(6):479-490.doi:10.16819/j.1001-7216.2020.9135. Kang Y W, Chen Y Y, Zhang Y X. Research progress and breeding prospects of grain size associated genes in rice[J]. Chinese Journal of Rice Science, 2020, 34(6):479-490. [6] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice[J]. Nature Communications, 2018, 9(1):851.doi:10.1038/s41467-018-03141-y. [7] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat(Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2011, 122(1):211-223.doi:10.1007/s00122-010-1437-z. [8] Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat(Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2004, 109(5):933-943.doi:10.1007/s00122-004-1708-7. [9] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats(Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2006, 113(4):753-766.doi:10.1007/s00122-006-0346-7. [10] Sun X Y, Wu K, Zhao Y, Kong F M, Han G Z, Jiang H M, Huang X J, Li R J, Wang H G, Li S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat[J]. Euphytica, 2008, 165(3):615-624.doi:10.1007/s10681-008-9794-2. [11] Sun X C, Marza F, Ma H X, Carver B F, Bai G H.Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat[J]. Theoretical and Applied Genetics, 2010, 120(5):1041-1051.doi:10.1007/s00122-009-1232-x. [12] Tang G Q, Lüscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning[J]. The Plant Cell, 1999, 11(2):177-189.doi:10.1105/tpc.11.2.177. [13] Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning[J]. Plant Physiology, 1999, 121(1):1-8.doi:10.1104/pp.121.1.1. [14] Chourey P S, Jain M, Li Q B, Carlson S J. Genetic control of cell wall invertases in developing endosperm of maize[J]. Planta, 2006, 223(2):159-167.doi:10.1007/s00425-005-0039-5. [15] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11):1370-1374.doi:10.1038/ng.220. [16] Ma D Y, Yan J, He Z H, Wu L, Xia X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers[J]. Molecular Breeding, 2012, 29(1):43-52.doi:10.1007/s11032-010-9524-z. [17] Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. Journal of Experimental Botany, 2002, 53(370):979-987.doi:10.1093/jexbot/53.370.979. [18] Tobin A K, Yamaya T. Cellular compartmentation of ammonium assimilation in rice and barley[J]. Journal of Experimental Botany, 2001, 52(356):591-604.doi:10.1093/jexbot/52.356.591. [19] Li X P, Zhao X Q, He X, Zhao G Y, Li B, Liu D C, Zhang A M, Zhang X Y, Tong Y P, Li Z S. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use-and yield-related traits in bread wheat[J]. New Phytologist, 2011, 189(2):449-458.doi:10.1111/j.1469-8137.2010.03490.x. [20] Kleczkowski L A, Kunz S, Wilczynska M. Mechanisms of UDP-glucose synthesis in plants[J]. Critical Reviews in Plant Sciences, 2010, 29(4):191-203.doi:10.1080/07352689.2010.483578. [21] Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat(T.aestivum) sucrose synthase 2 gene(TaSus2) active in endosperm development is associated with yield traits[J]. Functional & Integrative Genomics, 2011, 11(1):49-61.doi:10.1007/s10142-010-0188-x. [22] Lagudah E S, Appels R, McNeil D. The Nor-D3 locus Triticum tauschii:natural variation and genetic linkage to markers in chromosome 5[J]. G nome, 1991, 34(3):387-395.doi:10.1139/g91-060. [23] Cui F, Ding A M, Li J, Zhao C H, Li X F, Feng D S, Wang X Q, Wang L, Gao J R, Wang H G. Wheat kernel dimensions:How do they contribute to kernel weight at an individual QTL level?[J]. Journal of Genetics, 2011, 90(3):409-425.doi:10.1007/s12041-011-0103-9. [24] 张福彦, 范家霖, 陈晓杰, 陈锋, 齐红志, 王嘉欢, 程仲杰, 杨保安, 张建伟. 小麦粒重相关基因的遗传定位和分子标记辅助育种进展[J].植物遗传资源学报, 2020, 21(3):507-516.doi:10.13430/j.cnki.jpgr.20191107002. Zhang F Y, Fan J L, Chen X J, Chen F, Qi H Z, Wang J H, Cheng Z J, Yang B A, Zhang J W. Genetic localization and marker assisted breeding of grain weight-related genes in common wheat[J]. Journal of Plant Genetic Resources, 2020, 21(3):507-516. [25] 周军, 李魁印, 张立, 彭琴, 徐如宏, 任明见. 242份小麦品种(系)成株期抗条锈病鉴定及分子标记检测[J].河南农业科学, 2020, 49(6):84-97.doi:10.15933/j.cnki.1004-3268.2020.06.011. Zhou J, Li K Y, Zhang L, Peng Q, Xu R H, Ren M J. Identification of adult-plant resistance to stripe rust and molecular marker detection of Yr gene in 242 wheat varieties(lines)[J]. Journal of Henan Agricultural Sciences, 2020, 49(6):84-97. [26] 寇程, 高欣, 李立群, 李扬, 王中华, 李学军. 小麦粒重基因TaGW2-6A 等位变异的组成分析及育种选择[J].作物学报, 2015, 41(11):1640-1647.doi:10.3724/SP.J.1006.2015.01640. Kou C, Gao X, Li L Q, Li Y, Wang Z H, Li X J. Composition and selection of TaGW2-6A alleles for wheat kernel weight[J]. Acta Agronomica Sinica, 2015, 41(11):1640-1647. [27] 相吉山, 穆培源, 桑伟, 聂迎彬, 徐红军, 庄丽, 崔凤娟, 韩新年, 邹波. 小麦粒重基因TaCwi-A1 功能标记CWI22、CWI21的验证及应用[J].中国农业科学, 2014, 47(13):2671-2709.doi:10.3864/j.issn.0578-1752.2014.13.019. Xiang J S, Mu P Y, Sang W, Nie Y B, Xu H J, Zhuang L, Cui F J, Han X N, Zou B. Validation and application of function markers CWI22 and CWI21 of TaCwi-A1 gene related to wheat kernel weight[J]. Scientia Agricultura Sinica, 2014, 47(13):2671-2709. [28] 时佳, 白璐, 任毅, 穆培源, 梁晓东, 玛依拉, 耿洪伟. 新疆小麦TaGW2-6A、TaCwi-A1、TaSus2-2B 等位变异对粒重的影响及应用[J].分子植物育种, 2018, 16(3):848-858.doi:10.13271/j.mpb.016.000848. Shi J, Bai L, Ren Y, Mu P Y, Liang X D, Ma Y L, Geng H W. Effects and application of allelic variation of TaGW2-6A, TaCwi-A1 and TaSus2-2B on grain weight of Xinjiang wheat[J]. Molecular Plant Breeding, 2018, 16(3):848-858. [29] 宋晓朋, 王宇娟, 武炳瑾, 马文洁, 张德强, 周丽敏, 孙道杰.黄淮麦区部分小麦和国外引进小麦GS2 等位基因的检测及其与农艺性状的关联分析[J].麦类作物学报, 2016, 36(3):281-286.doi:10.7606/j.issn.1009-1041.2016.03.04. Song X P, Wang Y J, Wu B J, Ma W J, Zhang D Q, Zhou L M, Sun D J. Allelic variations of TaGS2 genes and their association with agronomic traits in wheat cultivars from Huang-Huai wheat region in China and overseas[J]. Journal of Triticeae Crops, 2016, 36(3):281-286. [30] 刘永伟, 周硕, 王雪征, 孙果忠, 朱金永, 韩秋芬, 李春杰, 赵和, 王海波. 粒重基因TaCwi-A1 等位变异在黄淮麦区小麦品种(系)中的分布及功能分析[J].华北农学报, 2017, 32(2):131-137.doi:10.7668/hbnxb.2017.02.020. Liu Y W, Zhou S, Wang X Z, Sun G Z, Zhu J Y, Han Q F, Li C J, Zhao H, Wang H B. Functional analysis and distribution of allelic variations of TaCwi-A1 gene related to kernel weight in Yellow and Huai river valleys facultative wheat zone[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(2):131-137. |