[1] Zhang W L, Jiang W B. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance[J]. Trends in Food Science & Technology, 2019, 92(3):71-80.doi:10.1016/j.tifs.2019.08.012. [2] McKenzie R L, Aucamp P J, Bais A F, Björn L O, Ilyas M, Madronich S. Ozone depletion and climate change:Impacts on UV radiation[J]. Photochemical & Photobiological Sciences, 2011, 10(2):182-198.doi:10.1039/c0pp90034f. [3] Taalas P, Kaurola J, Kylling A, Shindell D, Sausen R, Dameris M, Grewe V, Herman J, Damski J, Steil B. The impact of greenhouse gases and halogenated species on future solar UV radiation doses[J]. Geophysical Research Letters, 2000, 27(8):1127-1130.doi:10.1029/1999GL010886. [4] Qian G, Ran X, Zhou C X, Deng D Q, Zhang P L, Guo Y, Luo J H, Zhou X H, Xie H, Cai M. Systemic lupus erythematosus patients in the low-latitude plateau of China:altitudinal influences[J]. Lupus, 2014, 23(14):1537-1545.doi:10.1177/0961203314544186. [5] Caldwell M M, Robberecht R, Billings W D. A steep latitudinal gradient of solar ultraviolet-B radiation in the arctic-alpine life zone[J]. Ecology, 1980, 61(3):600-611.doi:10.2307/1937426. [6] 陆建珍, 徐雪高, 汪翔, 秦建军, 易中懿.中国紫甘薯产业发展分析[J].农业展望, 2020, 16(8):81-89.doi:10.3969/j.issn.1673-3908.2020.08.012. Lu J Z, Xu X G, Wang X, Qin J J, Yi Z Y. Analysis of purple sweet potato industry in China[J]. Agricultural Outlook, 2020, 16(8):81-89. [7] 侯丽娟, 李雪英, 刘刚, 王同勇, 朱海波, 田孝威. 威海紫甘薯种植加工产业现状和发展对策[J].农产品加工(学刊), 2014(2):49-51.doi:10.3969/j.issn.1671-9646(X).2014.02.016. Hou L J, Li X Y, Liu G, Wang T Y, Zhu H B, Tian X W. Weihai purple sweet potato cultivation and processing industrialization status and development countermeasures[J]. Academic Periodical of Farm Products Processing, 2014(3):49-51. [8] 郑丽瑶. 紫薯花青素及其提取工艺的研究进展[J].东南园艺, 2019, 7(3):56-60. Zheng L Y. Advances in research on purple sweet potato anthocyanins and their extraction process[J]. Southeast Horticulture, 2019, 7(3):56-60. [9] 张婷, 姚刚, 范玉和, 程勇杰, 陈小伟, 张沙沙, 崔斌, 毛旸晨, 蔡海莺, 胡东, 毛建卫. 紫薯功能性研究进展[C]//中国食品科学技术学会第十四届年会暨第九届中美食品业高层论坛论文摘要集. 无锡:中国食品科学技术学会, 美国食品科技学会, 2017. Zhang T, Yao G, Fan Y H, Cheng Y J, Chen X W, Zhang S S, Cui B, Mao Y C, Cai H Y, Hu D, Mao J W. The functional research progress of purple sweet potatoes[C]//Abstracts of Food Summit in China & 14th Annual Meeting of CIFST. Wuxi:Chinese Institute of Food Science and Technology, American Institute of Food Science and Technology, 2017. [10] 孟凡来, 白磊, 郭华春, 赵大伟, 王应梅, 李玉祥, 滕娟. 云南低纬高原不同类型紫甘薯对UV-B辐射增强的响应[J].热带农业科学, 2021, 41(2):24-32.doi:10.12008/j.issn.1009-2196.2021.02.004. Meng F L, Bai L, Guo H C, Zhao D W, Wang Y M, Li Y X, Teng J. Response of two types of purple sweet potatoes to UV-B radiation enhancement in Yunnan low latitude plateau[J]. Chinese Journal of Tropical Agriculture, 2021, 41(2):24-32. [11] 孟凡来, 郭华春. 不同甘薯品种抗UV-B辐射增强的效应分析[J].中国农业气象, 2019, 40(5):293-300.doi:10.3969/j.issn.1000-6362.2019.05.003. Meng F L, Guo H C. Effect analysis of anti-UV-B enhancement of two sweet potato cultivars[J]. Chinese Journal of Agrometeorology, 2019, 40(5):293-300. [12] 孟凡来, 郭华春. UV-B辐射增强对甘薯光合特性和紫外吸收物质的影响[J].作物杂志, 2019(5):114-119.doi:10.16035/j.issn.1001-7283.2019.05.019. Meng F L, Guo H C. Effects of enhanced UV-B on photosynthetic characteristics and UV-absorbing compounds of sweet potato[J]. Crops, 2019(5):114-119. [13] 何永美, 湛方栋, 祖艳群, 徐渭渭, 李元. 大田增强UV-B辐射对元阳梯田地方水稻茎秆性状和倒伏指数的影响[J].应用生态学报, 2015, 26(1):39-45.doi:10.13287/j.1001-9332.20141208.002. He Y M, Zhan F D, Zu Y Q, Xu W W, Li Y. Effects of enhanced UV-B radiation on culm charateristics and lodging index of two local rice varieties in Yuanyang terraces under field condition[J]. Chinese Journal of Applied Ecology, 2015, 26(1):39-45. [14] Ji C Y, Bian X F, Lee C J, Kim H S, Kim S E, Park S C, Xie Y Z, Guo X D, Kwak S S. De novo transcriptome sequencing and gene expression profiling of sweet potato leaves during low temperature stress and recovery[J]. Gene, 2019, 700:23-30.doi:10.1016/j.gene.2019.02.097. [15] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515.doi:10.1038/nbt.1621. [16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi:10.1006/meth.2001.1262. [17] 马进, 郑钢.南方型紫花苜蓿叶片盐胁迫应答基因鉴定与分析[J].农业生物技术学报, 2015, 23(12):1531-1541.doi:10.3969/j.issn.1674-7968.2015.12.001. Ma J, Zheng G. Identification and preliminary analysis of salt stress-responsive genes in leaves of Southern Type Alfalfa(Medicago sativa ‘millennium’)[J]. Journal of Agricultural Biotechnology, 2015, 23(12):1531-1541. [18] 张婧蕾, 李佳赟, 王依纯, 裴翠明, 马进.南方型紫花苜蓿耐盐突变体叶片盐胁迫应答差异基因鉴定与分析[J].农业生物技术学报, 2017, 25(10):1588-1599.doi:10.3969/j.issn.1674-7968.2017.10.004. Zhang J L, Li J Y, Wang Y C, Pei C M, Ma J. Identification and analysis of differentially-expressed genes under salt stress in leaves of southern type Alfalfa(Medicago sativa ‘Millennium’) salt tolerant mutant[J]. Journal of Agricultural Biotechnology, 2017, 25(10):1588-1599. [19] 张鹏钰, 王国瑞, 曹丽茹, 袁珍, 库丽霞, 王同朝, 卫丽.干旱胁迫和复水处理下玉米差异表达转录因子基因分析[J].农业生物技术学报, 2020, 28(2):211-222.doi:10.3969/j.issn.1674-7968.2020.02.003. Zhang P Y, Wang G R, Cao L R, Yuan Z, Ku L X, Wang T C, Wei L. Analysis of differentially expressed transcription factor genes in maize(Zea mays) under drought stress and re-watering[J]. Journal of Agricultural Biotechnology, 2020, 28(2):211-222. [20] 魏薇, 贾彦丽, 吴硕, 智福军.水分胁迫下枣裂果的全长转录组分析[J].华北农学报, 2020, 35(S1):63-71.doi:10.7668/hbnxb.20191835. Wei W, Jia Y L, Wu S, Zhi F J. Full-length transcriptome analysis of fruit cracking of Chinese jujube under water stress[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(S1):63-71. [21] Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants.Balancing damage and protection[J]. Plant Physiology, 2003, 133(4):1420-1428.doi:10.1104/pp.103.030049. [22] Deshmukh A B, Datir S S, Bhonde Y, Kelkar N, Samdani P, Tamhane V A. De novo root transcriptome of a medicinally important rare tree Oroxylum indicum for characterization of the flavonoid biosynthesis pathway[J]. Phytochemistry, 2018, 156:201-213.doi:10.1016/j.phytochem.2018.09.013. [23] Tao X, Fang Y, Huang M J, Xiao Y, Liu Y, Ma X R, Zhao H. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed(Landoltia punctata)[J]. BMC Genomics, 2017, 18(1):166.doi:10.1186/s12864-017-3559-z. [24] Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K. Phytochemical genomics in Arabidopsis thaliana:A case study for functional identification of flavonoid biosynthesis genes[J]. Pure and Applied Chemistry, 2007, 79(4):811-823.doi:10.1351/pac200779040811. [25] 王霞, 李恩广, 玄曼霖, 燕宝会, 王晶珊, 隋炯明.基于转录组测序的紫色甘薯突变体中花青素合成相关基因的分析[J].青岛农业大学学报(自然科学版), 2018, 35(1):27-31.doi:10.3969/J.ISSN.1674-148X.2018.01.005. Wang X, Li E G, Xuan M L, Yan B H, Wang J S, Sui J M. Gene analysis of anthocyanin biosynthesis in purple sweet potato mutant based on transcriptome sequencing[J]. Journal of Qingdao Agricultural University (Natural Science), 2018, 35(1):27-31. [26] 石晓芳. 甘薯花青素合成途径基因表达差异的研究[D].重庆:西南大学, 2013. Shi X F. Study on the expression differences of anthocyanin biosynthetic pathway genes in sweet potato[D].Chongqing:Southwest University, 2013. [27] 温国琴. 苦荞细胞色素P450 基因的克隆、原核表达及逆境条件对其在芽期苦荞中表达的影响[D].成都:四川农业大学, 2013. Wen G Q. Cloning and prokaryotic expression of cytochrome P450 gene from Fagopyrum tataticum, and its expression level in adversity at sprout stage[D].Chengdu:Sichuan Agricultural University, 2013. [28] Bak S, Tax F E, Feldmann K A, Galbraith D W, Feyereisen R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis[J]. The Plant Cell, 2001, 13(1):101-111.doi:10.1105/tpc.13.1.101. [29] Wang H, Li W Q, Qin Y G, Pan Y P, Wang X F, Weng Y Q, Chen P, Li Y H. The cytochrome P450 gene CsCYP85A1 is a putative candidate for Super Compact-1(Scp-1) plant architecture mutation in Cucumber(Cucumis sativus L.)[J]. Frontiers in Plant Science, 2017, 8:266.doi:10.3389/fpls.2017.00266. [30] Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo R A, Fidalgo F. Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress[J]. Environmental and Experimental Botany, 2016, 122:115-125.doi:10.1016/j.envexpbot.2015.09.010. [31] Kaur H, Sirhindi G, Bhardwaj R, Alyemeni M N, Siddique K H M, Ahmad P. 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea[J]. Scientific Reports, 2018, 8(1):8735.doi:10.1038/s41598-018-27032-w. [32] Sun B, Jiang M, Yuan Q, Zhang F, Tang H R. Bioinformatics analysis of the gene CYP83B1 in cabbage(Brassica oleracea var. capitata)[C]//Proceedings of the 20183rd International Workshop on Materials Engineering and Computer Sciences(IWMECS 2018). Ji'nan:Computer Science and Electronic Technology International Society, 2018. [33] 赵桂红, 石宏, 张妮妮, 陆苗, 王晶, 李焘. 菘蓝CYP83B1 基因的克隆与表达分析[J].植物科学学报, 2017, 35(1):64-72.doi:10.11913/PSJ.2095-0837.2017.10064. Zhao G H, Shi H, Zhang N N, Lu M, Wang J, Li T. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Science Journal, 2017, 35(1):64-72. [34] Li X J, Guo X, Zhou Y H, Shi K, Zhou J, Yu J Q, Xia X J. Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato[J]. BMC Plant Biology, 2016, 16:33.doi:10.1186/s12870-016-0715-6. [35] 鲁雪莉, 段方猛, 万芳源, 李宝笃, 宋雯雯. 过量表达菠菜SoCYP85A1 基因增强烟草的耐盐性[J].植物生理学报, 2017, 53(3):454-460.doi:10.13592/j.cnki.ppj.2016.0551. Lu X L, Duan F M, Wan F Y, Li B D, Song W W. Overexpression of SoCYP85A1 gene from Spinacia oleracea enhances high-salt tolerance in tobacco[J]. Plant Physiology Journal, 2017, 53(3):454-460. [36] Chen Y Y, Li M Y, Wu X J, Huang Y, Ma J, Xiong A S. Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot[J]. Molecular Breeding, 2015, 35(5):125-136.doi:10.1007/s11032-015-0319-0. [37] 钟婵娟, 彭伟业, 王冰, 刘世名, 戴良英, 李魏. 植物逆境响应相关的C2H2型锌指蛋白研究进展[J].植物生理学报, 2020, 56(11):2356-2366.doi:10.13592/j.cnki.ppj.2020.0171. Zhong C J, Peng W Y, Wang B, Liu S M, Dai L Y, Li W. Advances of plant C2H2 zinc finger proteins in response to stresses[J]. Plant Physiology Journal, 2020, 56(11):2356-2366. [38] 王力伟, 房永雨, 刘红葵, 郭保民, 王蕴华, 孙瑞芬, 吉鹏华, 何江峰.bHLH转录因子的研究进展[J].畜牧与饲料科学, 2020, 41(1):23-27.doi:10.12160/j.issn.1672-5190.2020.01.005. Wang L W, Fang Y Y, Liu H K, Guo B M, Wang Y H, Sun R F, Ji P H, He J F. Research progress of bHLH transcription factors[J].Animal Husbandry and Feed Science, 2020, 41(1):23-27. [39] 王春雨, 张茜. 植物NAC转录因子功能研究进展[J].生物技术通报, 2018, 34(11):8-14.doi:10.13560/j.cnki.biotech.bull.1985.2018-0443. Wang C Y, Zhang Q. Research progress on plant NAC transcription factors[J]. Biotechnology Bulletin, 2018, 34(11):8-14. [40] To J P C, Deruère J, Maxwell B B, Morris V F, Hutchison C E, Ferreira F J, Schaller G E, Kieber J J. Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay[J]. The Plant Cell, 2007, 19(12):3901-3914.doi:10.1105/tpc.107.052662. [41] Wang F, Xu Z B, Fan X L, Zhou Q, Cao J, Ji G S, Jing S Z, Feng B, Wang T. Transcriptome analysis reveals complex molecular mechanisms underlying UV tolerance of wheat(Triticum aestivum, L.)[J]. Journal of Agricultural and Food Chemistry, 2019, 67(2):563-577.doi:10.1021/acs.jafc.8b05104. |