[1] Wang B, Lai T, Huang Q W, Yang X M, Shen Q R. Effect of N fertilizers on root growth and endogenous hormones in strawberry[J]. Pedosphere, 2009, 19(1):86-95. doi:10.1016/S1002-0160(08)60087-9. [2] Pantalone V R, Burton J W, Carter Jr T E. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits[J]. Crop Science, 1996, 36(5):1120-1125. doi:10.2135/cropsci1996.0011183x003600050008x. [3] Liang H Z, Yu Y L, Yang H Q, Xu L J, Dong W, Du H, Cui W W, Zhang H Y. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theoretical and Applied Genetics, 2014, 127(10):2127-2137. doi:10.1007/s00122-014-2366-z. [4] 金剑, 王光华, 刘晓冰, 李艳华, 陈雪丽, Stephen J Herbert. 东北黑土区高产大豆R5期根系分布特征[J].中国油料作物学报,2007(3):266-271. doi:10.3321/j.issn:1007-9084.2007.03.008. Jin J, Wang G H, Liu X B, Li Y H, Chen X L, Herbert S J. Characteristics of root distribution at R5 stage in high yielding soybean in black soil[J]. Chinses Journal of Oil Crop Sciences, 2007(3):266-271. [5] 张含彬, 任万军, 杨文钰. 氮肥处理下套作大豆根系建成与产量关系的研究[J]. 中国土壤与肥料, 2007(2):46-49. doi:10.11838/sfsc.20070211. Zhang H B, Ren W J, Yang W Y. Relationship between root characteristics and yield formation in relay-planting soybean under the nitrogen application[J]. Soils and Fertilizers Sciences in China, 2007(2):46-49. [6] 梁泉, 尹元萍, 严小龙, 廖红. 不同磷水平下大豆根系性状的遗传特性分析[J]. 分子植物育种, 2009, 7(2):321-329. doi:10.3969/j.issn.1672-416X.2009.02.017. Liang Q, Yin Y P, Yan X L, Liao H. Genetic analysis of root characters in soybean using a recombinant inbred line population at two phosphorus levels[J]. Molecular Plant Breeding, 2009, 7(2):321-329. [7] 高阳, 章建新, 楚光红, 傅积海. 不同施氮量下春大豆根系生长与花荚形成的关系[J].吉林农业大学学报, 2018, 40(3):258-263. doi:10.13327/j.jjlau.2018.3780. Gao Y, Zhang J X, Chu G H, Fu J H. Relationship between spring soybean root growth and flower pod formation under different nitrogen application rates[J]. Journal of Jilin Agricultural University, 2018, 40(3):258-263. [8] 周行, 龚屾, 郑殿峰, 冯乃杰, 齐德强, 赵海东, 梁晓燕, 李冰. 黑龙江省不同大豆品种根系分布特征及与产量的关系[J].大豆科学, 2020, 39(1):52-61. doi:10.11861/j.issn.1000-9841.2020.01.0052. Zhou H, Gong S, Zheng D F, Feng N J, Qi D Q, Zhao H D, Liang X Y, Li B. Root distribution characteristics of different soybean varieties in Heilongjiang province and the relationship with yield[J]. Soybean Science, 2020, 39(1):52-61. [9] 张晓霞, 张惠君, 宋书宏, 王文斌, 敖雪, 谢甫绨. 超高产大豆根系活力和根瘤特性的比较研究[J]. 大豆科学, 2013, 32(4):496-500. doi:10.11861/j.issn.1000-9841.2013.04.0496. Zhang X X, Zhang H J, Song S H, Wang W B, Ao X, Xie F T. Comparison on root activity and nodulation characteristics of super-high yielding soybeans[J]. Soybean Science, 2013, 32(4):496-500. [10] Roth U, von Roepenack-Lahaye E, Clemens S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+[J]. Journal of Experimental Botany, 2006, 57(15):4003-4013. doi:10.1093/jxb/erl170. [11] 曹晓宁. 利用嫁接技术研究不同年代大豆品种根系性状的演变[D]. 成都:四川农业大学, 2013. Cao X N. Studies on the evolution of root traits of soybean varieties from different decades by using grafting technique[D]. Chengdu:Sichuan Agricultural University, 2013. [12] 闫春娟,宋书宏,王文斌,王昌陵,张立军,曹永强,孙旭刚,武丽石,王雅珍,陈艳秋,韩毅强.不同耐旱型大豆根系生理生化特性对不同降雨气候条件的响应[J].江苏农业科学, 2018, 46(13):51-54. doi:10.15889/j.issn.1002-1302.2018.13.012. Yan C J, Song S H, Wang W B, Wang C L, Zhang L J, Cao Y Q, Sun X G, Wu L S, Wang Y Z, Chen Y Q, Han Y Q. Response of physiological and biochemical characteristics of soybean roots with different drought tolerance to different rainfall climatic conditions[J]. Jiangsu Agricultural Sciences, 2018, 46(13):51-54. [13] Pantalone V R, Rebetzke G J, Burton J W, Carter T E, Israel D W. Soybean PI 416937 root system contributes to biomass accumulation in reciprocal grafts[J]. Agronomy Journal, 1999, 91(5):840-844. doi:10.2134/agronj1999.915840x. [14] 刘国宁,张治安,徐克章.吉林省不同年代育成大豆品种某些农艺性状和生理性状的比较[J].大豆科学,2009,28(3):415-420. doi:10.1007/s10677-013-9464-x. Liu G N, Zhang Z A, Xu K Z. Changes of some physiological characteristics and agronomic traits during genetic improvement of soybean cultivars in Jilin Province of China[J]. Soybean Science, 2009,28(3):415-420. [15] 谭春燕, 杨文钰, 陈佳琴, 杨春杰, 朱星陶, 王凯. 干旱胁迫下大豆种质资源的生理响应及抗旱性评价[J].分子植物育种, 2020, 18(4):1349-1356. doi:10.13271/j.mpb.018.001349. Tan C Y, Yang W Y, Chen J Q, Yang C J, Zhu X T, Wang K. The physiological response and drought resistance assessment of soybean germplasm resources under drought stress[J]. Molecular Plant Breeding, 2020, 18(4):1349-1356. [16] 李文滨, 宋春晓, 苌兴超, 张沿政, 景雅, 陈龙, 赵家梁, 李永光. 干旱胁迫下20个大豆品种抗旱性评价[J]. 东北农业大学学报, 2019, 50(4):1-10. doi:10.19720/j.cnki.issn.1005-9369.2019.4.0001. Li W B, Song C X, Chang X C, Zhang Y Z, Jing Y, Chen L, Zhao J H, Li Y G. Drought resistance evaluation of 20 soybean varieties under drought stress[J]. Journal of Northeast Agricultural University, 2019, 50(4):1-10. [17] Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T. Physiological and molecular approaches to improve drought resistance in soybean[J]. Plant and Cell Physiology, 2009, 50(7):1260-1276. doi:10.1093/pcp/pcp082. [18] Passioura J B. Roots and drought resistance[J]. Agricultural Water Management, 1983, 7(1-3):265-280. doi:10.1016/0378-3774(83)90089-6. [19] Xiong Y C, Li F M, Xu B C, Hodgkinson K C. Hydraulic and non-hydraulic root-sourced signals in old and modern spring wheat cultivars in a semiarid area[J]. Journal of Plant Growth Regulation, 2006, 25(2):120-136. doi:10.1007/s00344-005-0056-4. [20] 张荣, 张大勇. 半干旱区春小麦不同年代品种根系生长冗余的比较实验研究[J].植物生态学报,2000,24(3):298-303. Zhang R, Zhang D Y. A comparative study on root redundancy in spring wheat varieties released in different years in semi-arid area[J]. Acta Phytoecologica Sinica, 2000, 24(3):298-303. [21] 田中伟, 樊永惠, 殷美, 王方瑞, 蔡剑, 姜东, 戴廷波. 长江中下游小麦品种根系改良特征及其与产量的关系[J].作物学报,2015,41(4):613-622.doi:10.3724/SP.J.1006.2015.00613. Tian Z W, Fan Y H, Yin M, Wang F R, Cai J, Jiang D, Dai Y B. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the Middle-Lower Yangze River[J]. Acta Agronomica Sinica, 2015, 41(4):613-622. [22] Wang C Y, Liu W, Li Q X, Ma D Y, Lu H F, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions[J]. Field Crops Research, 2014, 165:138-149. doi:10.1016/j.fcr.2014.04.011. [23] Lynch J P. Rightsizing root phenotypes for drought resistance[J]. Journal of Experimental Botany, 2018, 69(13):3279-3292. doi:10.1093/jxb/ery048. [24] Fried H G, Narayanan S, Fallen B. Evaluation of soybean[Glycine max (L.) Merr.]genotypes for yield, water use efficiency, and root traits[J]. PLoS One, 2019, 14(2):e0212700. doi:10.1371/journal.pone.0212700. [25] Zhu Y H, Weiner J, Yu M X, Li F M. Evolutionary agroecology, trends in root architecture during wheat breeding[J]. Evolutionary Applications, 2019, 12(4):733-743. doi:10.1111/eva.12749. [26] Zhu Y H, Weiner J, Li F M. Root proliferation in response to neighbouring roots in wheat (Triticum aestivum)[J]. Basic Applied Ecology, 2019, 39:10-14. doi:10.1016/j.baae.2019.07.001. [27] Li S Y, Wang W B, Cao Y Q, Wang C L, Yan C J, Dong L J, Wu L S, Xie F T, Song S H. How root traits would be affected by soybean yield improvement? An examination of historical cultivars grafted with record-yield cultivar scion[J]. Plant and Soil, 2019, 439(1-2):19-30. doi:10.1007/s11104-018-3792-5. [28] Birouste M, Zamora-Ledezma E, Bossard C, Pérez-Ramos I M, Roumet C. Measurement of fine root tissue density:a comparison of three methods reveals the potential of root dry matter content[J]. Plant and Soil, 2014, 374(1-2):299-313. doi:10.1007/s11104-013-1874-y. |