[1] |
|
|
Zhao J X, Yu Y T, Zhou Y, Li Y M, Fan M P. Effect of organic manure replacing chemical nitrogenous fertilizer on main yield and nitrogen uptake and utilization efficiency[J]. Research of Soil and Water Conservation, 2022, 29(5):374-381.
|
[2] |
Westra S, Fowler H J, Evans J P, Alexander L V, Berg P, Johnson F, Kendon E J, Lenderink G, Roberts N M. Future changes to the intensity and frequency of short-duration extreme rainfall[J]. Reviews of Geophysics, 2014, 52(3):522-555.doi: 10.1002/2014rg000464.
URL
|
[3] |
Liu K, Harrison M T, Archontoulis S V, Huth N, Yang R, Liu D L, Yan H L, Meinke H, Huber I, Feng P Y, Ibrahim A, Zhang Y B, Tian X H, Zhou M X. Climate change shifts forward flowering and reduces crop waterlogging stress[J]. Environmental Research Letters, 2021, 16(9):094017.doi: 10.1088/1748-9326/ac1b5a.
|
[4] |
Ren B Z, Zhang J W, Li X, Fan X, Dong S T, Liu P, Zhao B. Effects of waterlogging on the yield and growth of summer maize under field conditions[J]. Canadian Journal of Plant Science, 2014, 94(1):23-31.doi: 10.4141/cjps2013-175.
URL
|
[5] |
Tian L X, Li J, Bi W S, Zuo S Y, Li L J, Li W L, Sun L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize( Zea mays L.) under field conditions[J]. Agricultural Water Management, 2019, 218:250-258.doi: 10.1016/j.agwat.2019.03.054.
URL
|
[6] |
|
|
Wang Q, Zhao X Y, Liu D Y, Yan Z H, Li H P, Dong P F, Li C H. Root morphological,physiological traits and yield of maize under waterlogging and low light stress[J]. Scientia Agricultura Sinica, 2020, 53(17):3479-3495.
|
[7] |
Pedersen O, Sauter M, Colmer T D, Nakazono M. Regulation of root adaptive anatomical and morphological traits during low soil oxygen[J]. New Phytologist, 2021, 229(1):42-49.doi: 10.1111/nph.16375.
URL
|
[8] |
Kumari S, Patra D, Mishra N, Panigrahi K C S. Impact of abiotic stress on the root growth and development[M]//Microbial Management of Plant Stresses. Amsterdam:Elsevier, 2021:235-250.doi: 10.1016/b978-0-323-85193-0.00016-4.
|
[9] |
|
|
Zhu J, Peng Y Q, Shen R Y, Li W J, Zhou G L, Huang X X. Effects of flooding stress on growth,physiology and casparian strip of roots in Chinese cabbage seedlings[J]. Plant Physiology Journal, 2019, 55(8):1089-1097.
|
[10] |
张雯叶, 赵亲文, 刘园园, 杨星, 侯苗. 涝渍胁迫对不同作物根系及土壤酶活性的影响[J]. 中国农村水利水电, 2023(6):209-214, 221.doi: 10.12396/znsd.221354.
|
|
Zhang W Y, Zhao Q W, Liu Y Y, Yang X, Hou M. Effects of waterlogging stress on root and soil enzyme activities of different crops[J]. China Rural Water and Hydropower, 2023(6):209-214,221.
|
[11] |
|
|
Wang H, Gao M, Jin M C, Gao H J. Influences of waterlogging stress on morphology and nutrient uptake of maize roots at seedling stage[J]. Journal of Anhui Agricultural University, 2018, 45(3):538-544.
|
[12] |
|
|
Guo X X, Li X F, Zhu H F, Zhu Y Y, Hou R X, Hou X L. Respiratory metabolism of pakchoi seedlings roots under water logging stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(4):793-800.
|
[13] |
Capon S J, James C S, Williams L, Quinn G P. Responses to flooding and drying in seedlings of a common Australian Desert floodplain shrub: Muehlenbeckia florulenta Meisn.(tangled lignum)[J]. Environmental and Experimental Botany, 2009, 66(2):178-185.doi: 10.1016/j.envexpbot.2009.02.012.
URL
|
[14] |
Liang K, Tang K Y, Fang T, Qiu F Z. Waterlogging tolerance in maize:Genetic and molecular basis[J]. Molecular Breeding, 2020, 40(12):111.doi: 10.1007/s11032-020-01190-0.
|
[15] |
Lin H H, Lin K H, Syu J Y, Tang S Y, Lo H F. Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress[J]. Journal of Plant Biochemistry and Biotechnology, 2016, 25(1):87-96.doi: 10.1007/s13562-015-0314-x.
URL
|
[16] |
Kozdr J, Van Elsas J D. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches[J]. Soil Biology and Biochemistry, 2000, 32(10):1405-1417.doi: 10.1016/S0038-0717(00)00058-4.
URL
|
[17] |
|
|
Wei H P, Li R Q. Effect of flooding on morphology,structure and atpase activity in adventitious root apical cells of maize seedlings[J]. Acta Phytoecologica Sinica, 2000, 24(3):293-297.
|
[18] |
|
|
Zhu X Y, Liang M, Ma Y. A review report on the experiments for the determination of root activity by TTC method[J]. Guangdong Chemical Industry, 2020, 47(6):211-212.
|
[19] |
Jia W T, Ma M H, Chen J L, Wu S J. Plant morphological,physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms[J]. International Journal of Molecular Sciences, 2021, 22(3):1088.doi: 10.3390/ijms22031088.
URL
|
[20] |
|
|
Li Z X, Qin S J, Lü D G, Nie J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors[J]. Plant Physiology Journal, 2011, 47(10):957-966.
|
[21] |
Yu F, Liang K, Fang T, Zhao H L, Han X S, Cai M J, Qiu F Z. A group Ⅶ ethylene response factor gene,ZmEREB180,coordinates waterlogging tolerance in maize seedlings[J]. Plant Biotechnology Journal, 2019, 17(12):2286-2298.doi: 10.1111/pbi.13140.
URL
|
[22] |
Costa C T D, Offringa R, Fett-Neto A G. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings[J]. Plant Science, 2020, 290:110294.doi: 10.1016/j.plantsci.2019.110294.
URL
|
[23] |
马月花, 郭世荣, 杜南山, 孙锦, 束胜. 低氧胁迫对黄瓜幼苗生长和形态结构及有关酶活性的影响[J]. 南京农业大学学报, 2016, 39(2):213-219.doi: 10.7685/jnau.201506001.
|
|
Ma Y H, Guo S R, Du N S, Sun J, Shu S. Effect of hypoxia stress on growth,morpho-anatomical acclimation and activity of involved enzymes of cucumber seedlings[J]. Journal of Nanjing Agricultural University, 2016, 39(2):213-219.
|
[24] |
|
|
Wang Q, Zhang C L, Li G M, Li L. Influences of waterlogging stress on roots morphology and physiology for rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(2):157-162.
|
[25] |
Qin T Y, Kazim A, Wang Y H, Richard D, Yao P F, Bi Z Z, Liu Y H, Sun C, Bai J P. Root-related genes in crops and their application under drought stress resistance-a review[J]. International Journal of Molecular Sciences, 2022, 23(19):11477.doi: 10.3390/ijms231911477.
URL
|
[26] |
Zheng C X, Shen F, Wang Y, Wu T, Xu X F, Zhang X Z, Han Z H. Intricate genetic variation networks control the adventitious root growth angle in apple[J]. BMC Genomics, 2020, 21(1):1-18.doi: 10.1186/s12864-020-07257-8.
|
[27] |
Bonser A M, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132(2):281-288.doi: 10.1111/j.1469-8137.1996.tb01847.x.
pmid: 11541132
|
[28] |
Shao H, Xia T T, Wu D L, Chen F J, Mi G H. Root growth and root system architecture of field-grown maize in response to high planting density[J]. Plant and Soil, 2018, 430(1/2):395-411.doi: 10.1007/s11104-018-3720-8.
|
[29] |
Kitomi Y, Hanzawa E, Kuya N, Inoue H, Hara N, Kawai S, Kanno N, Endo M, Sugimoto K, Yamazaki T, Sakamoto S, Sentoku N, Wu J Z, Kanno H, Mitsuda N, Toriyama K, Sato T, Uga Y. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35):21242-21250.doi: 10.1073/pnas.2005911117.
pmid: 32817523
|
[30] |
Mace E S, Singh V, Oosterom E J, Hammer G L, Hunt C H, Jordan D R. QTL for nodal root angle in sorghum( Sorghum bicolor L.Moench)co-locate with QTL for traits associated with drought adaptation[J]. Theoretical and Applied Genetics, 2012, 124(1):97-109.doi: 10.1007/s00122-011-1690-9.
pmid: 21938475
|
[31] |
Oyanagi A. Gravitropic response growth angle and vertical distribution of roots of wheat( Triticum aestivum L.)[J]. Plant and Soil, 1994, 165(2):323-326.doi: 10.1007/BF00008076.
URL
|
[32] |
Wasaya A, Zhang X Y, Fang Q, Yan Z Z. Root phenotyping for drought tolerance:a review[J]. Agronomy, 2018, 8(11):241.doi: 10.3390/agronomy8110241.
URL
|
[33] |
Karlova R, Boer D M, Hayes S, Testerink C. Root plasticity under abiotic stress[J]. Plant Physiology, 2021, 187(3):1057-1070.doi: 10.1093/plphys/kiab392.
pmid: 34734279
|
[34] |
Manschadi A M, Hammer G L, Christopher J T, De Voil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat( Triticum aestivum L.)[J]. Plant and Soil, 2008, 303(1):115-129.doi: 10.1007/s11104-007-9492-1.
URL
|
[35] |
Correa J, Postma J A, Watt M, Wojciechowski T. Soil compaction and the architectural plasticity of root systems[J]. Journal of Experimental Botany, 2019, 70(21):6019-6034.doi: 10.1093/jxb/erz383.
pmid: 31504740
|
[36] |
Toal T W, Ron M, Gibson D, Kajala K, Splitt B, Johnson L S, Miller N D, Slovak R, Gaudinier A, Patel R, de Lucas M, Provart N J, Spalding E P, Busch W, Kliebenstein D J, Brady S M. Regulation of root angle and gravitropism[J]. G3 Genes|Genomes|Genetics, 2018, 8(12):3841-3855.doi: 10.1534/g3.118.200540.
|
[37] |
Zhu J M, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize( Zea mays)[J]. Functional Plant Biology, 2005, 32(8):749-762.doi: 10.1071/fp05005.
URL
|
[38] |
Lynch J P. Steep,cheap and deep:an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany, 2013, 112(2):347-357.doi: 10.1093/aob/mcs293.
URL
|
[39] |
Lynch J P. Rightsizing root phenotypes for drought resistance[J]. Journal of Experimental Botany, 2018, 69(13):3279-3292.doi: 10.1093/jxb/ery048.
pmid: 29471525
|
[40] |
Lynch J P. Root phenotypes for improved nutrient capture:an underexploited opportunity for global agriculture[J]. New Phytologist, 2019, 223(2):548-564.doi: 10.1111/nph.15738.
URL
|
[41] |
Oyanagi A, Nakamoto T, Morita S. The gravitropic response of roots and the shaping of the root system in cereal plants[J]. Environmental and Experimental Botany, 1993, 33(1):141-158.doi: 10.1016/0098-8472(93)90062-K.
URL
|
[42] |
|
[43] |
York L M, Lynch J P. Intensive field phenotyping of maize( Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition[J]. Journal of Experimental Botany, 2015, 66(18):5493-5505.doi: 10.1093/jxb/erv241.
URL
|
[44] |
Lynch J P, Brown K M. Topsoil foraging an architectural adaptation of plants to low phosphorus availability[J]. Plant and Soil, 2001, 237(2):225-237.doi: 10.1023/A:1013324727040.
URL
|
[45] |
|
|
Chen Z Y, Xie Y X, Zhang Y Y, Gou P X, Ma D Y, Kang G Z, Wang C Y, Guo T C. Responses of root length density and root dry weight density to nitrogen fertilizer and their relationship with yield in wheat[J]. Journal of Triticeae Crops, 2020, 40(10):1223-1231.
|
[46] |
Schmull M, Thomas F M. Morphological and physiological reactions of young deciduous trees( Quercus robur L.,Q.petraea[Matt]Liebl., Fagus sylvatica L.)to waterlogging[J]. Plant and Soil, 2000, 225(1/2):227-242.doi: 10.1023/A:1026516027096.
URL
|
[47] |
|
|
Chong P F, Jia X Y, Tian Y L, Lu W T. Effect of elevated CO2 and precipitation regimes on allocation patterns of above-and belowground biomass of desert shrub reaumuria soongorica[J]. Acta Agrestia Sinica, 2019, 27(6):1537-1544.
|
[48] |
|
|
Tang L Z, Xu X Z, Fang S Z. Influence of soil waterlogging on growth and physiological properties of poplar and willow seedlings[J]. Chinese Journal of Applied Ecology, 1998, 9(5):471-474.
|
[49] |
|
|
Dong H Z, Li W J, Tang W, Li Z H, Zhang D M. Effects of water-deficit and water-logging on some physiological characteristics of cotton seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(10):1695-1699.
|
[50] |
|
|
Cai J F, Cao F L, Zhang W X. Effects of flooding stress on seedlings growth and anaerobic respiratory enzyme activities of Sapium sebiferum[J]. Journal of Central South University of Forestry & Technology, 2013, 33(9):5-10.
|
[51] |
|
|
Gong S Y, Liang X H, Yang S Q, Zhang S C, Zhu X W, Liu Q Y. Effect on growth and physiological characteristics of tobacco genotypes with different P-efficiency at seedling stage under low-phosphorus stress[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6):1217-1224.
doi: 10.11869/j.issn.100-8551.2019.06.1217
|
[52] |
|
|
Wang Y H, Sun H W, Wei C H, Wang L. Effects of activated water on growth and root activity of wheat[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1):124-133.
doi: 10.7668/hbnxb.20191554
|
[53] |
|
|
Zhang E R, Ren Y Y, Hu H Q, Liu Y H, Chen S S. Effects of calcium on growth and respiratory metabolism of hot pepper seedling roots under flood stress[J]. Acta Horticulturae Sinica, 2009, 36(12):1749-1754.
|
[54] |
|
|
Qin S J, Lü D G, Li Z X, Ma H Y, Liu L Z, Liu G C. Effects of water stress on respiration and other physiological metabolisms of Cerasus sachalinensis Kom.seedlings[J]. Scientia Agricultura Sinica, 2011, 44(1):201-209.
|
[55] |
|
|
Liu T J, Zheng X G, Li J S, Wang L P, Chen G M, Han X Y, Ju L. Effects of waterlogging stress on roots physiological and biochemical characteristics and growth of grafted red-seed edible seed watermelon seedlings[J]. Journal of Changjiang Vegetables, 2009(4):18-21.
|