[1] |
Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte[J]. Applied and Environmental Microbiology, 1999, 65(6):2741-2744.doi: 10.1128/AEM.65.6.2741-2744.1999.
|
[2] |
|
|
Yuan T. Research status of basic characteristics and functions of pyriform spore in India[J]. Jiangxi Agriculture, 2020(6):103-104.
|
[3] |
Qiang X Y, Weiss M, Kogel K H, Schäfer P. Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range[J]. Molecular Plant Pathology, 2012, 13(5):508-518.doi: 10.1111/j.1364-3703.2011.00764.x.
|
[4] |
Bandyopadhyay P, Yadav B G, Kumar S G, Kumar R, Kogel K H, Kumar S. Piriformospora indica and Azotobacter chroococcum consortium facilitates higher acquisition of N,P with improved carbon allocation and enhanced plant growth in Oryza sativa[J]. Journal of Fungi, 2022, 8(5):453.doi: 10.3390/jof8050453.
|
[5] |
Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin I T. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata[J]. Oecologia, 2005, 146(2):234-243.doi: 10.1007/s00442-005-0193-2.
pmid: 16032437
|
[6] |
Kundu A, Mishra S, Kundu P, Jogawat A, Vadassery J. Piriformospora indica recruits host-derived putrescine for growth promotion in plants[J]. Plant Physiology, 2022, 188(4):2289-2307.doi: 10.1093/plphys/kiab536.
|
[7] |
夏杨, 李传明, 刘琴, 韩光杰, 徐彬, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢对盐胁迫下水稻幼苗生长及抗氧化系统的影响[J]. 中国水稻科学, 2023, 37(5):543-552.doi: 10.16819/j.1001-7216.2023.230201.
|
|
Xia Y, Li C M, Liu Q, Han G J, Xu B, Huang L X, Qi J H, Lu Y R, Xu J. Effects of Piriformospora indica on the growth and antioxidant system of rice seedlings under salt stress[J]. Chinese Journal of Rice Science, 2023, 37(5):543-552.
|
[8] |
窦晓慧, 许婷婷, 董智, 先露露, 王艺颖, 李红丽, 杨子晋. 印度梨形孢—紫花苜蓿共生体幼苗对镉胁迫生理特性的响应[J]. 中国水土保持科学(中英文), 2024, 22(1):114-121.doi: 10.16843/j.sswc.2022132.
|
|
Dou X H, Xu T T, Dong Z, Xian L L, Wang Y Y, Li H L, Yang Z J. Physiological response of Piriformospora indica-Medicago sativa symbiotic seedlings to Cd stress[J]. Science of Soil and Water Conservation, 2024, 22(1):114-121.
|
[9] |
Richardson A E, Barea J M, McNeill A M, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil, 2009, 321(1):305-339.doi: 10.1007/s11104-009-9895-2.
|
[10] |
Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Annals of Microbiology, 2010, 60(4):579-598.doi: 10.1007/s13213-010-0117-1.
|
[11] |
|
[12] |
Zhang R F, Vivanco J M, Shen Q R. The unseen rhizosphere root soil microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37:8-14.doi: 10.1016/j.mib.2017.03.008.
|
[13] |
Song Y, Li X N, Yao S, Yang X L, Jiang X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation[J]. Science of the Total Environment, 2020, 728:138439.doi: 10.1016/j.scitotenv.2020.138439.
|
[14] |
|
|
Huang Y Q, Han X R, Yang J F, Han M, Bai H Z. Effect of peanut root exudates on soil microbial characteristics and community functional diversity[J]. Journal of Shenyang Agricultural University, 2015, 46(1):48-54.
|
[15] |
Neal A L, Ahmad S, Gordon-Weeks R, Ton J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere[J]. PLoS One, 2012, 7(4):e35498.doi: 10.1371/journal.pone.0035498.
|
[16] |
Schuck S, Baldwin I T, Bonaventure G. HSPRO acts via SnRK1-mediated signaling in the regulation of Nicotiana attenuata seedling growth promoted by Piriformospora indica[J]. Plant Signaling & Behavior, 2013, 8(4):e23537.doi: 10.4161/psb.23537.
|
[17] |
Hui F Q, Liu J, Gao Q K, Lou B G. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum[J]. Journal of Environmental Sciences, 2015, 37:184-191.doi: 10.1016/j.jes.2015.06.005.
|
[18] |
孙文秀, 邵晨阳, 陈妍妍, 聂明皓, 李震, 曹毅, 刘应保. 干旱胁迫下2种内生真菌对烟草生理生化指标及NAC基因表达的影响[J]. 华北农学报, 2024, 39(1):113-119.doi: 10.7668/hbnxb.20194526.
|
|
Sun W X, Shao C Y, Chen Y Y, Nie M H, Li Z, Cao Y, Liu Y B. Effects of two endophytic fungi on physiological and biochemical indexes and NAC gene expression in tobacco under drought stress[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):113-119.
doi: 10.7668/hbnxb.20194526
|
[19] |
|
|
Wang H L, Zheng X D. Impact of Piriformospora indica on the yield,quality and postharvest disease resistance of fruit in cherry tomato[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2):466-472.
|
[20] |
Liang J C, Wei C J, Song X R, Wang R, Shi H L, Tan J, Cheng D J, Wang W J, Wang X Q. Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum[J]. Environmental Microbiome, 2024, 19(1):6.doi: 10.1186/s40793-024-00548-7.
pmid: 38229154
|
[21] |
|
|
Song Y L, Yu J, Chen S G, Ding F J, Sun H, Yang C, Ma X W. Effects of humic acid bio-organic fertilizer on soil physicochemical properties and wheat yield[J]. Humic Acid, 2019(3):34-41,47.
|
[22] |
Zhao M L, Zhao J, Yuan J, Hale L, Wen T, Huang Q W, Vivanco J M, Zhou J Z, Kowalchuk G A, Shen Q R. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant,Cell & Environment, 2021, 44(2):613-628.doi: 10.1111/pce.13928.
|
[23] |
Nayyar A, Hamel C, Lafond G, Gossen B D, Hanson K, Germida J. Soil microbial quality associated with yield reduction in continuous-pea[J]. Applied Soil Ecology, 2009, 43(1):115-121.doi: 10.1016/j.apsoil.2009.06.008.
|
[24] |
|
|
Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3):298-310.
doi: 10.3724/SP.J.1258.2014.00027
|
[25] |
Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1):180-209.doi: 10.1111/jipb.13054.
|
[26] |
|
|
Hao L H, Chen K S, Li G Y. Effects of taurine on the growth and physiological properties of cucumber(Cucumis sativus L.) seedlings[J]. Journal of Shanghai Jiao Tong University(Agricultural Science), 2005, 23(1):10-14.
|
[27] |
Liu S, Wang Z Y, Niu J F, Dang K K, Zhang S K, Wang S Q, Wang Z Z. Changes in physicochemical properties,enzymatic activities,and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L.(American ginseng)[J]. Plant and Soil, 2021, 463(1):427-446.doi: 10.1007/s11104-021-04911-2.
|
[28] |
|
|
Yan W D. Research advance and reflection on soil micro-food webs and soil carbon sequestration in forests[J]. Journal of Central South University of Forestry & Technology, 2023, 43(11):1-12.
|
[29] |
|
|
Zhu F Y, Zhang Y, Xiao J L, Wei L, Liang Z H. Regulation of soil microbial community structures and watermelon Fusarium wilt by using bio-organic fertilizer[J]. Acta Microbiologica Sinica, 2019, 59(12):2323-2333.
|
[30] |
施河丽, 向必坤, 谭军, 彭五星, 孙玉晓, 王瑞, 吴文昊, 魏国胜, 丁才夫. 烟草青枯病发病烟株根际土壤细菌群落分析[J]. 中国烟草学报, 2018, 24(5):57-65.doi: 10.16472/j.chinatobacco.2018.031.
|
|
Shi H L, Xiang B K, Tan J, Peng W X, Sun Y X, Wang R, Wu W H, Wei G S, Ding C F. Analysis of bacterial community in rhizosphere soil of tobacco plant infected by bacterial wilt disease[J]. Acta Tabacaria Sinica, 2018, 24(5):57-65.
|
[31] |
|
|
Chang A R, Li J, Zhang S, Zhan J W, Wei D H, Wang P W, Yu J J. Analysis of bacterial community structure in rhizosphere soil of tobacco based on the metagenomics 16S rDNA sequencing technology[J]. Journal of Agricultural Science and Technology, 2017, 19(2):43-50.
doi: 10.13304/j.nykjdb.2016.377
|
[32] |
Adamczyk M, Rüthi J, Frey B. Root exudates increase soil respiration and alter microbial community structure in alpine permafrost and active layer soils[J]. Environmental Microbiology, 2021, 23(4):2152-2168.doi: 10.1111/1462-2920.15383.
pmid: 33393203
|