| [1] |
Shao X P, He W Z, Fan Y Y, Shen Q, Mao J C, Li M H, Hu G Z, Liu F J, Wang C. Study on the differences in aroma components and formation mechanisms of Nasmi melon from different production areas[J]. Food Science & Nutrition, 2022, 10(11):3608-3620.doi: 10.1002/fsn3.2958.
|
| [2] |
Mayobre C, Garcia-Mas J, Pujol M. A matter of smell:the complex regulation of aroma production in melon[J]. Food Chemistry, 2024, 460:140640.doi: 10.1016/j.foodchem.2024.140640.
|
| [3] |
Chen J Q, Lyu J H, He Z S, Zhang F, Zhang S L, Zhang H P. Investigations into the production of volatile compounds in Korla fragrant pears( Pyrus sinkiangensis Yu)[J]. Food Chemistry, 2020, 302:125337.doi: 10.1016/j.foodchem.2019.125337.
|
| [4] |
|
|
Zhang Y T, Dong J, Wang G X. Formation of aroma volatiles in strawberry fruit and aroma breeding[J]. Scientia Agricultura Sinica, 2004, 37(7):1039-1044.
|
| [5] |
Yang Y N, Zheng F P, Yu A N, Sun B G. Changes of the free and bound volatile compounds in Rubus corchorifolius L.f.fruit during ripening[J]. Food Chemistry, 2019, 287:232-240.doi: 10.1016/j.foodchem.2019.02.080.
|
| [6] |
Huang W J, Fang S M, Wang J, Zhuo C, Luo Y H, Yu Y L, Li L Q, Wang Y J, Deng W W, Ning J M. Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea[J]. Food Chemistry, 2022, 395:133549.doi: 10.1016/j.foodchem.2022.133549.
|
| [7] |
Luo D S, Pan X, Zhang W T, Bi S, Wu J H. Effect of glucose oxidase treatment on the aroma qualities and release of cooked off-odor components from heat-treated Hami melon juice[J]. Food Chemistry, 2022, 371:131166.doi: 10.1016/j.foodchem.2021.131166.
|
| [8] |
Nagashima Y, He K, Singh J, Metrani R, Crosby K M, Jifon J, Jayaprakasha G K, Patil B, Qian X N, Koiwa H. Transition of aromatic volatile and transcriptome profiles during melon fruit ripening[J]. Plant Science, 2021, 304:110809.doi: 10.1016/j.plantsci.2020.110809.
|
| [9] |
Li Y, Qi H Y, Jin Y Z, Tian X B, Sui L L, Qiu Y. Role of ethylene in biosynthetic pathway of related-aroma volatiles derived from amino acids in oriental sweet melons( Cucumis melo var.makuwa Makino)[J]. Scientia Horticulturae, 2016, 201:24-35.doi: 10.1016/j.scienta.2015.12.053.
|
| [10] |
|
|
Tang T X, Kong W P, Ren K L, Cheng H, Su Y Q, Liu Z F, Yang Y G, Zhao X Q. Advances in biosynthetic pathway and key regulatory factors of volatile esters in melon[J]. Food and Fermentation Industries, 2025, 51(2):398-405.
|
| [11] |
|
|
Li H Y. Seasonal development of nutrient components and aroma metabolism of Panguxiang pear and molecular regulation mechanism of postharvest storage[D]. Zhengzhou: Henan Agricultural University,2023.
|
| [12] |
Dudareva N, Klempien A, Muhlemann J K, Kaplan I. Biosynthesis,function and metabolic engineering of plant volatile organic compounds[J]. New Phytologist, 2013, 198(1):16-32.doi: 10.1111/nph.12145.
|
| [13] |
关小川. 嫁接对薄皮甜瓜果实酯类形成过程氨基酸途径的影响[D]. 沈阳: 沈阳农业大学, 2010.
|
|
Guan X C. Effect of grafting on biosynathesis of esters through amino acid pathway in oriental sweet molon[D]. Shenyang: Shenyang Agricultural University,20210.
|
| [14] |
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future:functions of phenylalanine-derived aroma compounds and advances in their industrial production[J]. Plant Biotechnology Journal, 2022, 20(9):1651-1669.doi: 10.1111/pbi.13863.
|
| [15] |
Peng B, Yu M L, Zhang B B, Xu J L, Ma R J. Differences in PpAAT1 activity in high-and low-aroma peach varieties affect γ-decalactone production[J]. Plant Physiology, 2020, 182(4):2065-2080.doi: 10.1104/pp.19.00964.
|
| [16] |
Li L X, Fang Y, Li D, Zhu Z H, Zhang Y, Tang Z Y, Li T, Chen X S, Feng S Q. Transcription factors MdMYC2 and MdMYB85 interact with ester aroma synthesis gene MdAAT1 in apple[J]. Plant Physiology, 2023, 193(4):2442-2458.doi: 10.1093/plphys/kiad459.
|
| [17] |
Souleyre E J F, Chagné D, Chen X Y, Tomes S, Turner R M, Wang M Y, Maddumage R, Hunt M B, Winz R A, Wiedow C, Hamiaux C, Gardiner S E, Rowan D D, Atkinson R G. The AAT1 locus is critical for the biosynthesis of esters contributing to Ripe apple flavour in Royal Gala and Granny Smith apples[J]. The Plant Journal, 2014, 78(6):903-915.doi: 10.1111/tpj.12518.
|
| [18] |
Dunemann F, Ulrich D, Malysheva-Otto L, Weber W E, Longhi S, Velasco R, Costa F. Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars[J]. Molecular Breeding, 2012, 29(3):609-625.doi: 10.1007/s11032-011-9577-7.
|
| [19] |
Li P C, Yu S W, Shen J, Li Q Q, Li D P, Li D Q, Zheng C C, Shu H R. The transcriptional response of apple alcohol acyltransferase(MdAAT2)to salicylic acid and ethylene is mediated through two apple MYB TFs in transgenic tobacco[J]. Plant Molecular Biology, 2014, 85(6):627-638.doi: 10.1007/s11103-014-0207-8.
|
| [20] |
Aharoni A, Keizer L C, Bouwmeester H J, Sun Z, Alvarez-Huerta M, Verhoeven H A, Blaas J, van Houwelingen A M, De Vos R C, van der Voet H, Jansen R C, Guis M, Mol J, Davis R W, Schena M, van Tunen A J, O'Connell A P. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays[J]. The Plant Cell, 2000, 12(5):647-662.doi: 10.1105/tpc.12.5.647.
|
| [21] |
Saez D, Rodríguez-Arriaza F, Urra G, Fabi J P, Hormazábal-Abarza F, Méndez-Yáñez A, Castro E, Bustos D, Ramos P, Morales-Quintana L. Unraveling the key step in the aroma puzzle:insights into alcohol acyltransferases in strawberries[J]. Plant Physiology and Biochemistry, 2024, 212:108668.doi: 10.1016/j.plaphy.2024.108668.
|
| [22] |
Cumplido-Laso G, Medina-Puche L, Moyano E, Hoffmann T, Sinz Q, Ring L, Studart-Wittkowski C, Caballero J L, Schwab W, Muñoz-Blanco J, Blanco-Portales R. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis[J]. Journal of Experimental Botany, 2012, 63(11):4275-4290.doi: 10.1093/jxb/ers120.
|
| [23] |
|
|
Cao X M. Metabolism and regulation of volatile esters in fruit[D]. Hangzhou: Zhejiang University,2019.
|
| [24] |
Günther C S, Chervin C, Marsh K B, Newcomb R D, Souleyre E J F. Characterisation of two alcohol acyltransferases from kiwifruit( Actinidia spp.) reveals distinct substrate preferences[J]. Phytochemistry, 2011, 72(8):700-710.doi: 10.1016/j.phytochem.2011.02.026.
|
| [25] |
Balbontín C, Gaete-Eastman C, Fuentes L, Figueroa C R, Herrera R, Manriquez D, Latché A, Pech J C, Moya-León M A. VpAAT1,a gene encoding an alcohol acyltransferase,is involved in ester biosynthesis during ripening of mountain Papaya fruit[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8):5114-5121.doi: 10.1021/jf904296c.
|
| [26] |
El-Sharkawy I, Manríquez D, Flores F B, Regad F, Bouzayen M, Latché A, Pech J C. Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles.Identification of the crucial role of a threonine residue for enzyme activity[J]. Plant Molecular Biology, 2005, 59(2):345-362.doi: 10.1007/s11103-005-8884-y.
|
| [27] |
Goulet C, Kamiyoshihara Y, Lam N B, Richard T, Taylor M G, Tieman D M, Klee H J. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition[J]. Molecular Plant, 2015, 8(1):153-162.doi: 10.1016/j.molp.2014.11.007.
|
| [28] |
Defilippi B G, Kader A A, Dandekar A M. Apple aroma:alcohol acyltransferase,a rate limiting step for ester biosynthesis,is regulated by ethylene[J]. Plant Science, 2005, 168(5):1199-1210.doi: 10.1016/j.plantsci.2004.12.018.
|
| [29] |
Goulet C, Mageroy M H, Lam N B, Floystad A, Tieman D M, Klee H J. Role of an esterase in flavor volatile variation within the tomato clade[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(46):19009-19014.doi: 10.1073/pnas.1216515109.
|
| [30] |
Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance[J]. Insect Biochemistry and Molecular Biology, 2000, 30(11):1009-1015.doi: 10.1016/S0965-1748(00)00079-5.
|
| [31] |
Turner J M, Larsen N A, Basran A, Barbas C F, Bruce N C, Wilson I A, Lerner R A. Biochemical characterization and structural analysis of a highly proficient cocaine esterase[J]. Biochemistry, 2002, 41(41):12297-12307.doi: 10.1021/bi026131p.
|
| [32] |
Manganaris A G, Alston F H. Genetics of esterase isoenzymes in Malus[J]. Theoretical and Applied Genetics, 1992, 83(4):467-475.doi: 10.1007/BF00226535.
|
| [33] |
Levisson M, van der Oost J, Kengen S W M. Carboxylic ester hydrolases from hyperthermophiles[J]. Extremophiles, 2009, 13(4):567-581.doi: 10.1007/s00792-009-0260-4.
|
| [34] |
Wang K, Huang Y N, Li X Y, Chen M H. Functional analysis of a carboxylesterase gene associated with isoprocarb and cyhalothrin resistance in Rhopalosiphum padi(L.)[J]. Frontiers in Physiology, 2018, 9:992.doi: 10.3389/fphys.2018.00992.
|
| [35] |
Rui C, Peng F J, Fan Y P, Zhang Y X, Zhang Z G, Xu N, Zhang H, Wang J, Li S M, Yang T, Malik W A, Lu X K, Chen X G, Wang D L, Chen C, Gao W W, Ye W W. Genome-wide expression analysis of carboxylesterase(CXE)gene family implies GBCXE49 functional responding to alkaline stress in cotton[J]. BMC Plant Biology, 2022, 22(1):194.doi: 10.1186/s12870-022-03579-9.
|
| [36] |
Wang L, Xie X D, Xu Y L, Li Z F, Xu G Y, Cheng L T, Yang J, Li L, Pu W X, Cao P J. Comprehensive analysis of the carboxylesterase gene reveals that NtCXE22 regulates axillary bud growth through strigolactone metabolism in tobacco[J]. Frontiers in Plant Science, 2022, 13:1019538.doi: 10.3389/fpls.2022.1019538.
|
| [37] |
Hiscock S J, Bown D, Gurr S J, Dickinson H G. Serine esterases are required for pollen tube penetration of the stigma in Brassica[J]. Sexual Plant Reproduction, 2002, 15(2):65-74.doi: 10.1007/s00497-002-0143-7.
|
| [38] |
Rejón J D, Zienkiewicz A, Rodríguez-García M I, Castro A J. Profiling and functional classification of esterases in olive( Olea europaea)pollen during germination[J]. Annals of Botany, 2012, 110(5):1035-1045.doi: 10.1093/aob/mcs174.
|
| [39] |
Souleyre E J F, Marshall S D G, Oakeshott J G, Russell R J, Plummer K M, Newcomb R D. Biochemical characterisation of MdCXE1,a carboxylesterase from apple that is expressed during fruit ripening[J]. Phytochemistry, 2011, 72(7):564-571.doi: 10.1016/j.phytochem.2011.01.020.
|
| [40] |
Cao X M, Xie K L, Duan W Y, Zhu Y Q, Liu M C, Chen K S, Klee H, Zhang B. Peach carboxylesterase PpCXE1 is associated with catabolism of volatile esters[J]. Journal of Agricultural and Food Chemistry, 2019, 67(18):5189-5196.doi: 10.1021/acs.jafc.9b01166.
|
| [41] |
Qi L Y, Li X J, Zang N N, Zhang Z R, Yang Y M, Du Y Q, Sun J N, Mostafa I, Yin Z P, Wang A D. Genome-wide identification of CXE and PuCXE15 functions in the catabolism of volatile ester in Nanguo pear fruit[J]. Plant Physiology and Biochemistry, 2023, 203:107996.doi: 10.1016/j.plaphy.2023.107996.
|
| [42] |
Martínez-Rivas F J, Blanco-Portales R, Moyano E, Alseekh S, Caballero J L, Schwab W, Fernie A R, Muñoz-Blanco J, Molina-Hidalgo F J. Strawberry fruit FanCXE1 carboxylesterase is involved in the catabolism of volatile esters during the ripening process[J]. Horticulture Research, 2022,9:uhac095.doi: 10.1093/hr/uhac095.
|
| [43] |
Zhang L J, Zhou K, Wang M H, Li R, Dai X L, Liu Y J, Jiang X L, Xia T, Gao L P. The functional characterization of carboxylesterases involved in the degradation of volatile esters produced in strawberry fruits[J]. International Journal of Molecular Sciences, 2022, 24(1):383.doi: 10.3390/ijms24010383.
|
| [44] |
|
|
Zhao G W, Xu Z H, Kong W H, Zhang J, Xu Y Y. Analysis of aromatic compounds in three melon cultivars(Cucumis melo L.) by solid phase microextracion with GC-MS[J].Journal of Fruit Science, 2015, 32(2):259-266.
|
| [45] |
|
|
Wang B J, Qi H Y, Liu Y, Wang J H. The relationship between volatile esters and free amino acids in different parts of ripe melon(Cucumis melo L.)[J]. Plant Physiology Communications, 2008, 44(2):215-220.
|
| [46] |
Senesi E, Scalzo R L, Prinzivalli C, Testoni A. Relationships between volatile composition and sensory evaluation in eight varieties of netted muskmelon( Cucumis melo L.var. reticulatus Naud)[J]. Journal of the Science of Food and Agriculture, 2002, 82(6):655-662.doi: 10.1002/jsfa.1087.
|
| [47] |
|
|
Wang D L, Sun J C, Liu C R, Zheng X L, Zha B. Effects of greenhouse facilities on aroma components of Citrus[J].Journal of Zhejiang Agricultural Sciences, 2020, 61(9):1791-1794,1815.
|
| [48] |
|
|
Qi H Y, Liu Y, Liu Y F. Qualitative and quantitative analysis of aroma compounds in ripe different oriental melons[J]. China Cucurbits and Vegetables, 2011, 24(6):1-6.
|
| [49] |
陈芝飞, 蔡莉莉, 郝辉, 赵志伟, 孙志涛, 马宇平, 刘前进, 杨靖, 董艳娟, 侯佩. 香气活力值在食品关键香气成分表征中的应用研究进展[J]. 食品科学, 2018, 39(19):329-335.doi: 10.7506/spkx1002-6630-201819049.
|
|
Chen Z F, Cai L L, Hao H, Zhao Z W, Sun Z T, Ma Y P, Liu Q J, Yang J, Dong Y J, Hou P. Progress in the application of odor activity values in the characterization of key aroma components in foods[J]. Food Science, 2018, 39(19):329-335.
|
| [50] |
|
|
Liu Y, Qi H Y, Wang B J, Guo L, Su X. Dynamic analysis of aromatic compounds in different cultivars of melon during the fruit ripeness[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(2):49-54.
|
| [51] |
刘勇, 齐红岩, 王博, 张多娇, 衣宁宁. 不同类群薄皮甜瓜感官检验与主要风味物质的关系[J]. 西北农业学报, 2009, 18(4):355-358.
|
|
Liu Y, Qi H Y, Wang B, Zhang D J, Yi N N. Correlation between sensory analysis and major flavor compounds in melon of five groups[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(4):355-358.
|
| [52] |
Rizzolo A, Grassi M, Influence of harvest date on ripening and volatile compounds in the scab-resistant apple cultivar Golden orange[J]. The Journal of Horticultural Science and Biotechnology, 2006, 81(4):681-690.doi: 10.1080/14620316.2006.11512124.
|
| [53] |
|
|
Wang M H. The functional characterization of carboxylesterase involved in the degradation of volatile esters in strawberry[D]. Hefei: Anhui Agricultural University,2021.
|
| [54] |
|
|
Luo Y. Study on the difference of aroma components of different varieties of thin-skinned Muskmelon[D]. Shenyang: Shenyang Agricultural University,2021.
|
| [55] |
Koeda S, Noda T, Hachisu S, Kubo A, Tanaka Y, Yamamoto H, Ozaki S, Kinoshita M, Ohno K, Tanaka Y, Tomi K, Kamiyoshihara Y. Expression of alcohol acyltransferase is a potential determinant of fruit volatile ester variations in Capsicum[J]. Plant Cell Reports, 2023, 42(11):1745-1756.doi: 10.1007/s00299-023-03064-z.
|
| [56] |
Li C B, Xin M, Li L, He X M, Yi P, Tang Y Y, Li J M, Zheng F J, Liu G M, Sheng J F, Li Z C, Sun J. Characterization of the aromatic profile of purple passion fruit( Passiflora edulis Sims)during ripening by HS-SPME-GC/MS and RNA sequencing[J]. Food Chemistry, 2021, 355:129685.doi: 10.1016/j.foodchem.2021.129685.
|
| [57] |
Peng L, Gao W K, Song M Y, Li M H, He D N, Wang Z R. Integrated metabolome and transcriptome analysis of fruit flavor and carotenoids biosynthesis differences between mature-green and tree-ripe of cv.golden phoenix mangoes( Mangifera indica L.)[J]. Frontiers in Plant Science, 2022, 13:816492.doi: 10.3389/fpls.2022.816492.
|
| [58] |
Zhang H J, Zhu X X, Xu R Z, Yuan Y S, Abugu M N, Yan C S, Tieman D, Li X. Postharvest chilling diminishes melon flavor via effects on volatile acetate ester biosynthesis[J]. Frontiers in Plant Science, 2023, 13:1067680.doi: 10.3389/fpls.2022.1067680.
|
| [59] |
|