| [1] |
|
|
Zhao L L, Ge W P, Song Y X, An X P. The composition and nutrition characteristics in sheep milk[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1):413-423.
|
| [2] |
Li R N, Ma Y H, Jiang L. Review:research progress of dairy sheep milk genes[J]. Agriculture, 2022, 12(2):169.doi: 10.3390/agriculture12020169.
|
| [3] |
Jiang R Y, Zhu J Y, Zhang H P, Yu Y, Dong Z X, Zhou H H, Wang X J. STAT3:key targets of growth-promoting receptor positive breast cancer[J]. Cancer Cell International, 2024, 24(1):356.doi: 10.1186/s12935-024-03541-9.
|
| [4] |
Hu X Y, Li J, Fu M R, Zhao X, Wang W. The JAK/STAT signaling pathway:from bench to clinic[J]. Signal Transduction and Targeted Therapy, 2021, 6:402.doi: 10.1038/s41392-021-00791-1.
|
| [5] |
Boutinaud M, Jammes H. Growth hormone increases Stat5 and Stat1 expression in lactating goat mammary gland:a specific effect compared to milking frequency[J]. Domestic Animal Endocrinology, 2004, 27(4):363-378.doi: 10.1016/j.domaniend.2004.04.002.
|
| [6] |
Zhou J B, Wan F, Wang L, Peng C, Huang R Z, Peng F. STAT4 facilitates PD-L1 level via IL-12R/JAK2/STAT3 axis and predicts immunotherapy response in breast cancer[J]. MedComm, 2023, 4(6):e464.doi: 10.1002/mco2.464.
|
| [7] |
Schmitt-Ney M, Doppler W, Ball R K, Groner B. β-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a MammaryGland-specific nuclear factor[J]. Molecular and Cellular Biology, 1991, 11(7):3745-3755.doi: 10.1128/mcb.11.7.3745-3755.1991.
|
| [8] |
|
|
Liu Y. Effects of JAK2 and STAT5A on characteristics of mammary epithelial cells and lactation traits in sheep[D]. Lanzhou: Gansu Agricultural University, 2024.
|
| [9] |
Khaled W T, Read E K C, Nicholson S E, Baxter F O, Brennan A J, Came P J, Sprigg N, McKenzie A N J, Watson C J. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development[J]. Development, 2007, 134(15):2739-2750.doi: 10.1242/dev.003194.
|
| [10] |
Semenzato G, Calabretto G, Teramo A, Gasparini V R, Rampazzo E, Barilà G, Zambello R. The constitutive activation of STAT3 gene and its mutations are at the crossroad between LGL leukemia and autoimmune disorders[J]. Blood Cancer Journal, 2024, 14(1):13.doi: 10.1038/s41408-024-00977-0.
|
| [11] |
Chapman R S, Lourenco P C, Tonner E, Flint D J, Selbert S, Takeda K, Akira S, Clarke A R, Watson C J. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3[J]. Genes & Development, 1999, 13(19):2604-2616.doi: 10.1101/gad.13.19.2604.
|
| [12] |
Hughes K, Watson C J. The multifaceted role of STAT3 in mammary gland involution and breast cancer[J]. International Journal of Molecular Sciences, 2018, 19(6):1695.doi: 10.3390/ijms19061695.
|
| [13] |
翟梦星. 荷斯坦奶牛BRCA2基因、STAT3基因SNPs检测及其与乳房炎和产奶性状的关联分析[D]. 杨凌: 西北农林科技大学, 2015.
|
|
Zhai M X. Detection of SNPs of BRCA2 gene and STAT3 gene in Holstein cows and their association with mastitis and milk production traits[D]. Yangling: Northwest A&F University, 2015.
|
| [14] |
Zhou H, Hickford J G H, Fang Q. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification[J]. Analytical Biochemistry, 2006, 354(1):159-161.doi: 10.1016/j.ab.2006.03.042.
|
| [15] |
吴贤锋. 山羊STAT3和STAT5A基因SNPs、mRNA表达及甲基化对生产性能的影响[D]. 杨凌: 西北农林科技大学, 2015.
|
|
Wu X F. Effects of SNPs and mRNA expression and methylation of STAT3 and STAT5A genes on production performance in goats[D]. Yangling: Northwest A&F University, 2015.
|
| [16] |
Paris A J, Hayer K E, Oved J H, Avgousti D C, Toulmin S A, Zepp J A, Zacharias W J, Katzen J B, Basil M C, Kremp M M, Slamowitz A R, Jayachandran S, Sivakumar A, Dai N, Wang P, Frank D B, Eisenlohr L C, Cantu E Ⅲ, Beers M F, Weitzman M D, Morrisey E E, Worthen G S. STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury[J]. Nature Cell Biology, 2020, 22(10):1197-1210.doi: 10.1038/s41556-020-0569-x.
|
| [17] |
Khaliq M, Ko S, Liu Y Z, Wang H L, Sun Y H, Solnica-Krezel L, Shin D. STAT3 regulates liver progenitor cell-driven liver regeneration in zebrafish[J]. Gene Expression, 2018, 18(3):157-170.doi: 10.3727/105221618x15242506133273.
|
| [18] |
Hardwick L J A, Davies B P, Pensa S, Burge-Rogers M, Davies C, Baptista A F, Knott R, S McCrone I, Po E, Strugnell B W, Waine K, Wood P, Khaled W T, Summers H D, Rees P, Wills J W, Hughes K. In the murine and bovine maternal mammary gland signal transducer and activator of transcription 3 is activated in clusters of epithelial cells around the day of birth[J]. Journal of Mammary Gland Biology and Neoplasia, 2024, 29(1):10.doi: 10.1007/s10911-024-09561-5.
|
| [19] |
Huang H X, Ruan Y F, Li C L, Zheng H, Tang Y T, Chen Y J, He F L, Liu Y, Wu G K, Li Z H, Wang Y G, Liao Y L, Bin J P, Chen Y M. Hypoxia microenvironment preconditioning attenuated myocardial ischemia-reperfusion injury via Stc1-mediating cardiomyocyte self-protection and neutrophil polarization[J]. Advanced Science, 2025, 12(6):2411880.doi: 10.1002/advs.202411880.
|
| [20] |
Song M Y, Wang C R, Yang H T, Chen Y P, Feng X J, Li B, Fan H G. P-STAT3 inhibition activates endoplasmic reticulum stress-induced splenocyte apoptosis in chronic stress[J]. Frontiers in Physiology, 2020, 11:680.doi: 10.3389/fphys.2020.00680.
|
| [21] |
Xu J W, Wang M Y, Mao Y, Hu Z Y, Miao X L, Jiang F, Zhou G P. Inhibition of STAT3 alleviates LPS-induced apoptosis and inflammation in renal tubular epithelial cells by transcriptionally down-regulating TASL[J]. European Journal of Medical Research, 2024, 29(1):34.doi: 10.1186/s40001-023-01610-9.
|
| [22] |
Ouyang H, Wu S C, Sung L Y, Yang S H, Yang S H, Chong K Y, Chen C M. STAT3 is an upstream regulator of granzyme G in the maternal-to-zygotic transition of mouse embryos[J]. International Journal of Molecular Sciences, 2021, 22(1):460.doi: 10.3390/ijms22010460.
|
| [23] |
Sollero B P, Howard J T, Spangler M L. The impact of reducing the frequency of animals genotyped at higher density on imputation and prediction accuracies using ss GBLUP1[J]. Journal of Animal Science, 2019, 97(7):2780-2792.doi: 10.1093/jas/skz147.
|
| [24] |
韩浩园, 李涛, 李世凯, 宋小雨, 李君, 哈斯, 赵金艳, 魏红芳, 权凯. GJB6和 PRKAA1基因多态性及其与槐山羊产羔数的关联分析[J]. 华北农学报, 2023, 38(4):225-232.doi: 10.7668/hbnxb.20193872.
|
|
Han H Y, Li T, Li S K, Song X Y, Li J, Ha S, Zhao J Y, Wei H F, Quan K. Analysis of GJB6 and PRKAA1 genes polymorphisms and their association with lambing number in Huai goats[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(4):225-232.
|
| [25] |
Bora S K, Tessema T S, Girmay G. Genetic diversity and population structure of selected Ethiopian indigenous cattle breeds using microsatellite markers[J]. Genetics Research, 2023, 2023(1): 1106755.doi: 10.1155/2023/1106755.
|
| [26] |
|
|
Zhou B F, Shi F Y, Zhang J J, He M C, Wang Y R, Xie W Z. Polymorphism of FSHR gene and its correlation with double lambs in long Dong Cashmere goats[J]. Chinese Journal of Animal Science, 2021, 57(8):67-71.
|
| [27] |
黄志强, 王维民, 张德印, 赵源, 张煜坤, 徐丹, 杨晓斌, 马宗武, 何丽娟, 蔡有鑫, 刘晓强, 张小雪. 湖羊 ANO5基因多态性及其与脂肪沉积性状的关联分析[J]. 华北农学报, 2025, 40(1):207-214.doi: 10.7668/hbnxb.20194928.
|
|
Huang Z Q, Wang W M, Zhang D Y, Zhao Y, Zhang Y K, Xu D, Yang X B, Ma Z W, He L J, Cai Y X, Liu X Q, Zhang X X. Analysis of ANO5 gene polymorphism and its association with fat deposition traits in Hu sheep[J]. Acta Agriculturae Boreali-Sinica, 2025, 40(1):207-214.
|
| [28] |
Seo S, Takayama K, Uno K, Ohi K, Hashimoto R, Nishizawa D, Ikeda K, Ozaki N, Nabeshima T, Miyamoto Y, Nitta A. Functional analysis of deep intronic SNP rs13438494 in intron 24 of PCLO gene[J]. PLoS One, 2013, 8(10):e76960.doi: 10.1371/journal.pone.0076960.
|
| [29] |
Li R F, Song X W, Gao S, Peng S Y. Analysis on the interactions between the first introns and other introns in mitochondrial ribosomal protein genes[J]. Frontiers in Microbiology, 2022, 13:1091698.doi: 10.3389/fmicb.2022.1091698.
|
| [30] |
Li Y F, Dang X L, Chen R, Teng Z W, Wang J Y, Li S W, Yue Y Y, Mitchell B L, Zeng Y, Yao Y G, Li M, Liu Z C, Yuan Y G, Li T, Zhang Z J, Luo X J. Cross-ancestry genome-wide association study and systems-level integrative analyses implicate new risk genes and therapeutic targets for depression[J]. Nature Human Behaviour, 2025, 9(4):806-823.doi: 10.1038/s41562-024-02073-6.
|
| [31] |
Fu L Z, Crawford L, Tong A, Luu N, Tanizaki Y, Shi Y B. Sperm associated antigen 7 is activated by T3 during Xenopus tropicalis metamorphosis via a thyroid hormone response element within the first intron[J]. Development, Growth & Differentiation, 2022, 64(1):48-58.doi: 10.1111/dgd.12764.
|
| [32] |
Singh O P, Mishra S, Sharma G, Sindhania A, Kaur T, Sreehari U, Das M K, Kapoor N, Gupta B. Evaluation of intron-1 of odorant-binding protein-1 of Anopheles stephensi as a marker for the identification of biological forms or putative sibling species[J]. PLoS One, 2022, 17(7):e0270760.doi: 10.1371/journal.pone.0270760.
|
| [36] |
Huang J L, Yang Z M, Wang Y X, Li X S, Liu C Y, Chen J P, Qin Q W, Yang M. Association between PPAR-δ gene SNPs,haplotypes and resistances to SGIV and RGNNV in the orange-spotted grouper,Epinephelus coioides[J]. Journal of South China Agricultural University, 2023, 44(3):391-401.
|
| [37] |
Liang H, Sedillo J C, Schrodi S J, Ikeda A. Structural variants in linkage disequilibrium with GWAS-significant SNPs[J]. Heliyon, 2024, 10(11):e32053.doi: 10.1016/j.heliyon.2024.e32053.
|
| [33] |
Pietrzak-Fiec'ko R, Kamelska-Sadowska A M. The comparison of nutritional value of human milk with other mammals' milk[J]. Nutrients, 2020, 12(5):1404.doi: 10.3390/nu12051404.
|
| [34] |
Jia W C, Wu X F, Li X C, Xia T, Lei C Z, Chen H, Pan C Y, Lan X Y. Novel genetic variants associated with mRNA expression of signal transducer and activator of transcription 3( STAT3)gene significantly affected goat growth traits[J]. Small Ruminant Research, 2015, 129:25-36.doi: 10.1016/j.smallrumres.2015.05.014.
|
| [35] |
Huang K, Dunn D W, Li W K, Wang D, Li B G. Linkage disequilibrium under polysomic inheritance[J]. Heredity, 2022, 128(1):11-20.doi: 10.1038/s41437-021-00482-1.
|
| [36] |
|