[1] |
Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize[J]. Genetics, 1997, 147(2):847-860.doi: 10.1093/genetics/147.2.847.
doi: 10.1093/genetics/147.2.847
pmid: 9335619
|
[2] |
Tan Y P, Li S Q, Xie H W, Duan S H, Wang T, Zhu Y G. Genetical and molecular analysis reveals a cooperating relationship between cytoplasmic male sterility-and fertility restoration-related genes in Oryza species[J]. Theoretical and Applied Genetics, 2011, 122(1):9-19.doi: 10.1007/s00122-010-1418-2.
doi: 10.1007/s00122-010-1418-2
URL
|
[3] |
He H H, Xu L, Peng X S, Yang G S, Zhu C L, Liu Z W, Ye G Y. Molecular tagging of the male fertility restorer gene for the 501-8S cytoplasmic male sterility in rapeseed( Brassica napus L.)[J]. Australian Journal of Agricultural Research, 2007, 58(8):753-758.doi: 10.1071/AR06369.
doi: 10.1071/AR06369
URL
|
[4] |
Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh N S, Tucker E J, Baumann U, Langridge P, Whitford R. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production[J]. Plant Biotechnology Journal, 2019, 17(10):1905-1913.doi: 10.1111/pbi.13106.
doi: 10.1111/pbi.13106
pmid: 30839150
|
[5] |
doi: 10.3969/j.issn.1006-950X.2012.21.040
|
|
Li Y Z. Hybrid seed production techniques of plant male sterile lines[J]. Henan Nongye, 2012(21):46-47.
|
[6] |
doi: 10.1146/annurev.arplant.55.031903.141717
pmid: 15862102
|
[7] |
Zhang D B, Wilson Z A. Stamen specification and anther development in rice[J]. Chinese Science Bulletin, 2009, 54(14):2342-2353.doi: 10.1007/s11434-009-0348-3.
doi: 10.1007/s11434-009-0348-3
URL
|
[8] |
Zhang D B, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development[J]. Journal of Genetics and Genomics, 2011, 38(9):379-390.doi: 10.1016/j.jgg.2011.08.001.
doi: 10.1016/j.jgg.2011.08.001
pmid: 21930097
|
[9] |
doi: 10.1093/oxfordjournals.jhered.a108817
URL
|
[10] |
Wan X Y, Wu S W, Li Z W, An X L, Tian Y H. Lipid metabolism:Critical roles in male fertility and other aspects of reproductive development in plants[J]. Molecular Plant, 2020, 13(7):955-983.doi: 10.1016/j.molp.2020.05.009.
doi: 10.1016/j.molp.2020.05.009
URL
|
[11] |
An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38):23499-23509.doi: 10.1073/pnas.2010255117.
doi: 10.1073/pnas.2010255117
|
[12] |
Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y. Map-based cloning and characterization of Zea mays male sterility33( ZmMs33)gene,encoding a glycerol-3-phosphate acyltransferase[J]. Theoretical and Applied Genetics, 2018, 131(6):1363-1378.doi: 10.1007/s00122-018-3083-9.
doi: 10.1007/s00122-018-3083-9
pmid: 29546443
|
[13] |
Fox T, DeBruin J, Collet K H, Trimnell M, Clapp J, Leonard A, Li B L, Scolaro E, Collinson S, Glassman K, Miller M, Schussler Y J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize[J]. Plant Biotechnology Journal, 2017, 15(8):942-952.doi: 10.1111/pbi.12689.
doi: 10.1111/pbi.12689
URL
|
[14] |
Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, Carl Falco S C, Jantz D, Alexander Lyznik L.Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene( MS26)using a re-designed I-CreI homing endonuclease[J]. The Plant Journal, 2013, 76(5):888-899.doi: 10.1111/tpj.12335.
doi: 10.1111/tpj.12335
pmid: 24112765
|
[15] |
Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding:Progress and perspectives[J]. Molecular Plant, 2019, 12(3):321-342.doi: 10.1016/j.molp.2019.01.014.
doi: 10.1016/j.molp.2019.01.014
URL
|
[16] |
Cigan A M, Unger E, Xu R J, Kendall T, Fox T W. Phenotypic complementation of ms45 maize requires tapetal expression of MS45[J]. Sexual Plant Reproduction, 2001, 14(3):135-142.doi: 10.1007/s004970100099.
doi: 10.1007/s004970100099
URL
|
[17] |
doi: 10.3969/j.issn.2095-1191.2003.03.009
|
|
Yu Y C, Zhu F, Wu L M. Nutritional value and comprehensive utilization prospect of sweet corn[J]. Jilin Vegetables, 1998(6):35-36.
|
[18] |
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+:Genetic mapping and mutant identification without crossing in rice[J]. PLoS One, 2013, 8(7):e68529.doi: 10.1371/journal.pone.0068529.
doi: 10.1371/journal.pone.0068529
URL
|
[19] |
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR:Mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Research, 2013, 23(4):687-697.doi: 10.1101/gr.146936.112.
doi: 10.1101/gr.146936.112
URL
|
[20] |
Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics,genomics and crop improvement[J]. Plant Biotechnology Journal, 2016, 14(10):1941-1955.doi: 10.1111/pbi.12559.
doi: 10.1111/pbi.12559
URL
|
[21] |
Agrama H A, Houssin S F, Tarek M A. Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize[J]. Molecular Genetics and Genomics, 2002, 267(6):814-819.doi: 10.1007/s00438-002-0713-2.
doi: 10.1007/s00438-002-0713-2
pmid: 12207229
|
[22] |
Klein H, Xiao Y G, Conklin P A, Govindarajulu R, Kelly J A, Scanlon M J, Whipple C J, Bartlett M. Bulked-segregant analysis coupled to whole genome sequencing(BSA-seq)for rapid gene cloning in maize[J]. G3 Genes|Genomes|Genetics, 2018, 8(11):3583-3592.doi: 10.1534/g3.118.200499.
doi: 10.1534/g3.118.200499
|
[23] |
Chaubal R, Anderson J R, Trimnell M R, Fox T W, Albertsen M C, Bedinger P. The transformation of anthers in the msca1 mutant of maize[J]. Planta, 2003, 216(5):778-788.doi: 10.1007/s00425-002-0929-8.
doi: 10.1007/s00425-002-0929-8
pmid: 12624765
|
[24] |
Fernandes A P, Holmgren A. Glutaredoxins:Glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system[J]. Antioxidants & Redox Signaling, 2004, 6(1):63-74.doi: 10.1089/152308604771978354.
doi: 10.1089/152308604771978354
|
[25] |
Yang F, Bui H T, Pautler M, Llaca V, Johnston R, Lee B H, Kolbe A, Sakai H, Jackson D. A maize glutaredoxin gene, Abphyl2,regulates shoot meristem size and phyllotaxy[J]. The Plant Cell, 2015, 27(1):121-131.doi: 10.1105/tpc.114.130393.
doi: 10.1105/tpc.114.130393
URL
|
[26] |
Yang R S, Xu F, Wang Y M, Zhong W S, Dong L, Shi Y N, Tang T J, Sheng H J, Jackson D, Yang F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity[J]. Nature Plants, 2021, 7(12):1589-1601.doi: 10.1038/s41477-021-01029-2.
doi: 10.1038/s41477-021-01029-2
pmid: 34907313
|
[27] |
doi: 10.27244/d.cnki.gnjnu.2017000158.
|
|
Gao Y G. Identification of mutation site and gene expression of male sterile nucleus gene MS22 in maize[D]. Nanjing: Nanjing Agricultural University, 2017.
|
[28] |
Chen W W, Yu X H, Zhang K S, Shi J X, De Oliveira S, Schreiber L, Shanklin J, Zhang D B. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis[J]. Plant Physiology, 2011, 157(2):842-853.doi: 10.1104/pp.111.181693.
doi: 10.1104/pp.111.181693
URL
|
[29] |
Wan L L, Zha W J, Cheng X Y, Liu C A, Lü L, Liu C X, Wang Z Q, Du B, Chen R Z, Zhu L L, He G C. A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development[J]. Planta, 2011, 233(2):309-323.doi: 10.1007/s00425-010-1301-z.
doi: 10.1007/s00425-010-1301-z
URL
|
[30] |
Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development[J]. Annual Review of Plant Biology, 2011, 62:437-460.doi: 10.1146/annurev-arplant-042809-112312.
doi: 10.1146/annurev-arplant-042809-112312
pmid: 21275644
|
[31] |
Pacini E, Franchi G G, Hesse M. The tapetum:Its form,function,and possible phylogeny in embryophyta[J]. Plant Systematics and Evolution, 1985, 149(3/4):155-185.doi: 10.1007/BF00983304.
doi: 10.1007/BF00983304
URL
|
[32] |
Bubert H, Lambert J, Steuernagel S, Ahlers F, Wiermann R. Continuous decomposition of sporopollenin from pollen of Typha angustifolia L.by acidic methanolysis[J]. Zeitschrift für Naturforschung C, 2002, 57(11/12):1035-1041.doi: 10.1515/znc-2002-11-1214.
doi: 10.1515/znc-2002-11-1214
URL
|
[33] |
Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 ( APV1)is required for male fertility by contributing to anther cuticle and pollen exine formation in maize[J]. The Plant Journal, 2017, 90(1):96-110.doi: 10.1111/tpj.13476.
doi: 10.1111/tpj.13476
pmid: 28078801
|