[1] |
Heidtmann-Bemvenuti R, Tralamazza S M, Jorge Ferreira C F, Corrêa B, Badiale-Furlong E. Effect of natural compounds on Fusarium graminearum complex[J]. Journal of the Science of Food and Agriculture, 2016, 96(12): 3998-4008.doi: 10.1002/jsfa.7591.
doi: 10.1002/jsfa.7591
URL
|
[2] |
doi: 10.16262/j.cnki.1000-8217.2020.04.012
|
|
Ma Z H, Chen Y, Yin Y N. Epidemiological analysis and management strategies of Fusarium head blight of wheat[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(4): 464-469.
|
[3] |
程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良[J]. 江苏农业学报, 2012, 28(5): 938-942.
|
|
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat Fusarium head blight(FHB)epidemics and genetic improvement of wheat for scab resistance in China[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 938-942.
|
[4] |
Merhej J, Richard-Forget F, Barreau C. Regulation of trichothecene biosynthesis in Fusarium: Recent advances and new insights[J]. Applied Microbiology and Biotechnology, 2011, 91(3): 519-528.doi: 10.1007/s00253-011-3397-x.
doi: 10.1007/s00253-011-3397-x
pmid: 21691790
|
[5] |
Qiu J, Xu J, Shi J. Fusarium toxins in Chinese wheat since the 1980s[J]. Toxins ( Basel), 2019, 11(5): E248.doi: 10.3390/toxins11050248.
doi: 10.3390/toxins11050248
|
[6] |
doi: 10.3969/j.issn.0529-1542.2017.05.002
|
|
Chen Y, Wang J Q, Yang R M, Ma Z H. Current situation and management strategies of Fusarium head blight in China[J]. Plant Protection, 2017, 43(5): 11-17.
|
[7] |
Hiddink G A, Termorshuizen A J, Raaijmakers J M, van Bruggen A H,. Effect of mixed and single crops on disease suppressiveness of soils[J]. Phytopathology, 2005, 95(11): 1325-1332.doi: 10.1094/phyto-95-1325.
doi: 10.1094/PHYTO-95-1325
pmid: 18943364
|
[8] |
doi: 10.13207/j.cnki.jnwafu.2006.03.020
|
|
Wang B T, Feng X J, Shang H S, Gao Z L, Li Q, Wang W Y, Li G B, Wang F. Distribution of take-all disease of wheat in Shaanxi Province & controlling effect of short rotation[J]. Journal of Northwest A & F University (Natural Science Edition), 2006, 34(3): 98-102.
|
[9] |
张丽红, 符建平, 高丽红, 吕建. 不同蔬菜轮作对日光温室土壤微生物的影响[J]. 中国农学通报, 2010, 26(1): 140-144.
|
|
Zhang L H, Fu J P, Gao L H, Lü J. Effects of different rotation models on soil micro-organisms in greenhouse[J]. Chinese Agricultural Science Bulletin, 2010, 26(1): 140-144.
|
[10] |
Cobo-Díaz J F, Baroncelli R, Le Floch G, Picot A. Combined metabarcoding and Co-occurrence network analysis to profile the bacterial,fungal and Fusarium communities and their interactions in maize stalks[J]. Frontiers in Microbiology, 2019, 10: 261.doi: 10.3389/fmicb.2019.00261.
doi: 10.3389/fmicb.2019.00261
URL
|
[11] |
doi: 10.1371/journal.pbio.1002378
|
[12] |
于高波, 吴凤芝, 周新刚. 小麦、毛苕子与黄瓜轮作对土壤微生态环境及产量的影响[J]. 土壤学报, 2011, 48(1): 175-184.
|
|
Yu G B, Wu F Z, Zhou X G. Effects of rotations of cucumber with wheat and hairy vetch on soil micro-ecological environment and its yield[J]. Acta Pedologica Sinica, 2011, 48(1): 175-184.
|
[13] |
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10-12.doi: 10.14806/ej.17.1.200.
doi: 10.14806/ej.17.1.200
|
[14] |
Magoč T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.doi: 10.1093/bioinformatics/btr507.
doi: 10.1093/bioinformatics/btr507
pmid: 21903629
|
[15] |
Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: A versatile open source tool for metagenomics[J]. Peer J, 2016, 4: e2584.doi: 10.7717/peerj.2584.
doi: 10.7717/peerj.2584
URL
|
[16] |
Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Pe a A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.doi: 10.1038/nmeth.f.303.
doi: 10.1038/nmeth.f.303
pmid: 20383131
|
[17] |
Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E. Defining operational taxonomic units using DNA barcode data.Philosophical transactions of the Royal Society of London Series B[J]. Biological Sciences, 2005, 360: 1935-1943.doi: 10.2307/30040940.
doi: 10.2307/30040940
|
[18] |
Langley J A, Hungate B A. Mycorrhizal controls on belowground litter quality[J]. Ecology, 2003, 84(9): 2302-2312.doi: 10.1890/02-0282.
doi: 10.1890/02-0282
URL
|
[19] |
Zhu Y G, Miller R M. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems[J]. Trends in Plant Science, 2003, 8: 407-409.doi: 10.1016/S1360-1385(03)00184-5.
doi: 10.1016/S1360-1385(03)00184-5
URL
|
[20] |
Six J, Frey S D, Thiet R K, Batten K M. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555-569.doi: 10.2136/sssaj2004.0347.
doi: 10.2136/sssaj2004.0347
URL
|
[21] |
Larkin R P, Griffin T S, Honeycutt C W. Rotation and cover crop effects on soilborne potato diseases, Tuber yield,and soil microbial communities[J]. Plant Dis, 2010, 94(12): 1491-1502.doi: 10.1094/pdis-03-10-0172.
doi: 10.1094/pdis-03-10-0172
URL
|
[22] |
Winter M, Mol F D, Tiedemann A V. Cropping systems with maize and oilseed rape for energy production may reduce the risk of stem base diseases in wheat[J]. Field Crops Research, 2014, 156: 249-257.doi: 10.1016/j.fcr.2013.10.009.
doi: 10.1016/j.fcr.2013.10.009
URL
|
[23] |
Yin C T, Jones K L, Peterson D E, Garrett K A, Hulbert S H, Paulitz T C. Members of soil bacterial communities sensitive to tillage and crop rotation[J]. Soil Biology and Biochemistry, 2010, 42(12): 2111-2118.doi: 10.1016/j.soilbio.2010.08.006.
doi: 10.1016/j.soilbio.2010.08.006
URL
|
[24] |
Bünemann E K, Steinebrunner F, Smithson P C, Frossard E, Oberson A. Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques[J]. Soil Science Society of America Journal, 2004, 68(5): 1645-1655.doi: 10.2136/sssaj2004.1645.
doi: 10.2136/sssaj2004.1645
URL
|
[25] |
李万星, 李丹, 李小霞, 曹晋军, 靳鲲鹏, 韩文清, 苏秀敏, 王佼, 黄学芳, 刘永忠. 不同轮作模式对旱地番茄品质、产量及土壤真菌多样性的影响[J]. 华北农学报, 2022, 37(4):82-89.doi: 10.7668/hbnxb.20192759.
doi: 10.7668/hbnxb.20192759
|
|
Li W X, Li D, Li X X, Cao J J, Jin K P, Han W Q, Su X M, Wang J, Huang X F, Liu Y Z. Effects of different rotation patterns on tomato quality and yield and soil fungi diversity in dryland[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4): 82-89.
doi: 10.7668/hbnxb.20192759
|
[26] |
Patra D D, Chand S, Anwar M. Seasonal changes in microbial biomass in soils cropped with palmarosa( Cymbopogon martinii L.)and Japanese mint( Mentha arvensis L.)in subtropical India[J]. Biology and Fertility of Soils, 1995, 19(2/3): 193-196.doi: 10.1007/BF00336158.
doi: 10.1007/BF00336158
URL
|
[27] |
doi: 10.13718/j.cnki.xdzk.2001.05.006
|
|
Zhou J J, Wang X C, Wu W B. Activation of some insoluble phosphorus forms by root exudates[J]. Journal of Southwest Agricultural University, 2001, 23(5): 401-403.
|
[28] |
Tiemann L K, Grandy A S, Atkinson E E, Marin-Spiotta E, McDanidel M D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem[J]. Ecology Letters, 2015, 18(8): 761-771.doi: 10.1111/ele.12453.
doi: 10.1111/ele.12453
pmid: 26011743
|
[29] |
Xiong W, Li R, Ren Y, Liu C, Zhao Q Y, Wu H, Jousset A, Shen Q. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease[J]. Soil Biology and Biochemistry, 2017, 107: 198-207.doi: 10.1016/j.soilbio.2017.01.010.
doi: 10.1016/j.soilbio.2017.01.010
URL
|
[30] |
doi: 10.13344/j.microbiol.china.181049
|
|
Sun Q, Wu H L, Chen F, Kang J H. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11): 2963-2972.
|
[31] |
doi: 10.13227/j.hjkx.201910180
|
|
Wang N, Pan X C, Wang C K, Bai S B. Effects of simulated acid rain on soil fungi diversity in the transition zone of moso bamboo and broadleaf forest[J]. Environmental Science, 2020, 41(5): 2476-2484.
|
[32] |
doi: 10.13227/j.hjkx.202001201
|
|
Liu S D, Han Y G, Zhu X P, Wu X N. Effects of cotton stalk biochar on the structure and function of fungi community in alkaline rhizosphere soil of rice under cadmium pollution[J]. Environmental Science, 2020, 41(8): 3846-3854.
|
[33] |
Ma A, Zhuang X, Wu J, Cui M, Lü D, Liu C, Zhuang G. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J]. PLoS One, 2013, 8(6): e66146.doi: 10.1371/journal.pone.0066146.
doi: 10.1371/journal.pone.0066146
URL
|
[34] |
Schoch C L, Sung G H, López-Giráldez F, Townsend J P, Miadlikowska J, Hofstetter V. The Ascomycota tree of life: A Phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits[J]. Systematic Biology, 2009, 58(2): 224-239.doi: 10.1093/sysbio/syp020.
doi: 10.1093/sysbio/syp020
pmid: 20525580
|
[35] |
Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson D J, Reitner J, Seyfullah L J, Schmidt A R. Estimating the phanerozoic history of the ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398.doi: 10.1016/j.ympev.2014.04.024.
doi: 10.1016/j.ympev.2014.04.024
pmid: 24792086
|
[36] |
Li F, Chen L, Redmile-Gordon M, Zhang J B, Zhang C Z, Ning Q, Li W. Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation and Development, 2018, 29(6):1642-1651.doi: 10.1002/ldr.2965.
doi: 10.1002/ldr.2965
URL
|
[37] |
doi: 10.3969/j.issn.1674-5906.2011.06.031
|
|
Hu C J, Liu G H, Wu Y Q. A review of soil microbial biomass and diversity measurements[J]. Ecology and Environmental Sciences, 2011, 20(S1): 1161-1167.
|
[38] |
doi: 10.7668/hbnxb.2016.05.031
|
|
Yuan M Z, Xin L, Liu S T, Nan Z W, Liu J T, Chen J P. Effects of different fertilization treatments on soil humus content and structure in long term continuous cropping soil[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(5): 205-209.
doi: 10.7668/hbnxb.2016.05.031
|
[39] |
Yuan J, Wen T, Zhang H, Zhao M, Penton C R, Thomashow L S, Shen Q R. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. The ISME Journal, 2020, 14(12): 2936-2950.doi: 10.1038/s41396-020-0720-5.
doi: 10.1038/s41396-020-0720-5
URL
|
[40] |
doi: 10.7666/d.Y3471768
|
|
Xie L. The species diversity and ecological function of dark septate endophytes in two ecosytems of Guangxi[D]. Nanning: Guangxi University, 2018.
|
[41] |
doi: 10.7666/d.Y2729199
|
|
Wang Q. The study on AM fungi in diversity and its distribution impact factors in moderate-temperate steppes of Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2014.
|
[42] |
George T S, Simpson R J, Gregory P J, Richardson A E. Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates[J]. Soil Biology and Biochemistry, 2007, 39(3): 793-803.doi: 10.1016/j.soilbio.2006.09.029.
doi: 10.1016/j.soilbio.2006.09.029
URL
|