[1] 陈传晓,董志强,高娇,徐田军,焦浏,卢霖,张凤路. 聚糠萘水剂对不同积温带春玉米灌浆期光合性能的影响[J].玉米科学,2013,21(3):66-70,75.doi:10.13597/j.cnki.maize.science.2013.03.015. Chen C X,Dong Z Q,Gao J,Xu T J,Jiao L,Lu L,Zhang F L. Effects of PASP-KT-NAA on the photosynthetic performances of different maize cultivars in different accumulated temperature zones[J]. Journal of Maize Sciences,2013,21(3):66-70,75. [2] 高娇,董志强,徐田军,陈传晓,焦浏,卢霖,董学瑞. 聚糠萘水剂对不同积温带玉米花后叶片氮同化的影响[J].生态学报,2014,34(11):2938-2947.doi:10.5846/stxb201212101773. Gao J,Dong Z Q,Xu T J,Chen C X,Jiao L,Lu L,Dong X R. Effects of PASP-KT-NAA on maize leaf nitrogen assimilation after florescence over different temperature gradients[J]. Acta Ecologica Sinica,2014,34(11):2938-2947. [3] 王庆燕,管大海,潘海波,李建民,段留生,张明才,李召虎.油菜素内酯对春玉米灌浆期叶片光合功能与产量的调控效应[J].作物学报,2015,41(10):1557-1563.doi:10.3724/SP.J.1006.2015.01557. Wang Q Y,Guan D H,Pan H B,Li J M,Duan L S,Zhang M C,Li Z H. Effect of brassinolide on leaf photosynthetic function and yield in spring maize filling stage[J]. Acta Agronomica Sinica,2015,41(10):1557-1563. [4] 卢霖,董志强,董学瑞,焦浏,李光彦,高娇. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响[J].作物学报,2015,41(12):1870-1879.doi:10.3724/SP.J.1006.2015.01870. Lu L,Dong Z Q,Dong X R,Jiao L,Li G Y,Gao J. Effects of ethylene-chlormequat-potassium on leaf nitrogen assimilation after anthesis and early senescence under different planting densities[J]. Acta Agronomica Sinica,2015,41(12):1870-1879. [5] 叶德练,王玉斌,周琳,李建民,段留生,张明才,李召虎. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应[J].作物学报,2015,41(11):1701-1710.doi:10.3724/SP.J.1006.2015.01701. Ye D L,Wang Y B,Zhou L,Li J M,Duan L S,Zhang M C,Li Z H. Effect of ethephon and nitrogen fertilizer on nitrogen uptake,nitrogen use efficiency and yield of summer maize[J]. Acta Agronomica Sinica,2015,41(11):1701-1710. [6] 李光彦,王庆燕,许艳丽,卢霖,焦浏,董学瑞,董志强. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响[J].2016,42(8):1215-1223.doi:10.3724/SP.J.1006.2016.01215. Li G Y,Wang Q Y,Xu Y L,Lu L,Jiao L,Dong X R,Dong Z Q. Effect of plant growth regulators on key enzymes in sucrose metabolism of ear leaf and grain at filling stage of spring maize[J]. Acta Agronomica Sinica,2016,42(8):1215-1223. [7] Fait A,Fromm H,Walter D,Galili G,Fernie A R. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends in Plant Science,2008,13(1):14-19.doi:10.1016/j.tplants.2007.10.005. [8] Fait A,Nesi A N,Angelovici R,Lehmann M,Pham P A,Song L H,Haslam R P,Napier J A,Galili G,Fernie A R. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner[J]. Plant Physiology,2011,157(3):1026-1042.doi:10.1104/pp.111.179986. [9] Renault H,El Amrani A,Berger A,Mouille G,Soubigou-Taconnat L,Bouchereau A,Deleu C. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots[J]. Plant, Cell & Environment,2013,36(5):1009-1018.doi:10.1111/pce.12033. [10] Salvatierra A,Pimentel P,Almada R,Hinrichsen P. Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock[J]. Environmental and Experimental Botany,2016,125:52-66.doi:10.1016/j.envexpbot.2016.01.009. [11] Vijayakumari K,Puthur J T. γ-Aminobutyric acid(GABA)priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress[J]. Plant Growth Regulation,2016,78(1):57-67.doi:10.1007/s10725-015-0074-6. [12] Soleimani Aghdam M,Naderi R,Jannatizadeh A,Sarcheshmeh M A A,Babalar M. Enhancement of postharvest chilling tolerance of Anthurium cut flowers by γ-aminobutyric acid(GABA)treatments[J]. Scientia Horticulturae,2016,198:52-60.doi:10.1016/j.scienta.2015.11.019. [13] Roberts M R.Does GABA act as a signal in plants? Hints from molecular studies[J] .Plant Signaling & Behavior,2007,2(5):408-409.doi:10.4161/psb.2.5.4335. [14] Batushansky A,Kirma M,Grillich N,Toubiana D,Pham P A,Balbo I,Fromm H,Galili G,Fernie A R,Fait A. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic[J]. Molecular Plant,2014,7(6):1065-1068.doi:10.1093/mp/ssu017. [15] Mekonnen D W,Flügge U I,Ludewig F. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana[J]. Plant Science,2016,245:25-34.doi:10.1016/j.plantsci.2016.01.005. [16] Li W G,Liu J H,Ashraf U,Li G K,Li Y L,Lu W J,Gao L,Han F G,Hu J G. Exogenous γ-aminobutyric acid(GABA)application improved early growth,net photosynthesis,and associated physio-biochemical events in maize[J]. Front Plant Sci,2016,7:919.doi:10.3389/fpls.2016.00919. [17] Khanna R R,Jahan B,Iqbal N,Khan N A,AlAjmi M F,Tabish Rehman M,Khan M I R. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat[J]. Journal of Biotechnology,2021,325:73-82.doi:10.1016/j.jbiotec.2020.11.015. [18] 王泳超,郑博元,顾万荣,李卓,毛俊,郭家萌,邵瑞鑫,杨青华. γ-氨基丁酸对盐胁迫下玉米幼苗根系氧化损伤及内源激素的调控[J].农药学学报,2018,20(5):607-617.doi:10.16801/j.issn.1008-7303.2018.0078. Wang Y C,Zheng B Y,Gu W R,Li Z,Mao J,Guo J M,Shao R X,Yang Q H. Γ-Aminobutyric acid on oxidative damage and endogenous hormones in maize seedling roots under salt stress[J]. Chinese Journal of Pesticide Science,2018,20(5):607-617. [19] Hu Y B,Chen B D. Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid,malic acid accumulation,and improvement of nitrogen assimilation in roots of water-stressed maize plants[J]. Mycorrhiza,2020,30(2/3):329-339.doi:10.1007/s00572-020-00952-0. [20] Saiz-Fernández I,Lacuesta M,Pérez-López U,Sampedro M C,Barrio R J,De Diego N. Interplay between 1-aminocyclopropane-1-carboxylic acid,γ-aminobutyrate and D-glucose in the regulation of high nitrate-induced root growth inhibition in maize[J]. Plant Science,2020,293:110418.doi:10.1016/j.plantsci.2020.110418. [21] Akram S.玉米苗期对渍害的响应及外源调节剂的调节机制[D].武汉:华中农业大学,2018. Akram S. Response of maize seedling to waterlogging and regulation mechanism of exogenous regulators[D].Wuhan:Huazhong Agricultural University,2018. [22] Seifikalhor M,Aliniaeifard S,Bernard F,Seif M,Latifi M,Hassani B,Didaran F,Bosacchi M,Rezadoost H,Li T. Γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems[J]. Scientific Reports,2020,10(1):3356.doi:10.1038/s41598-020-59592-1. [23] 张华永,崔丽娜,董树亭,高荣岐,孙爱清. 热胁迫诱导玉米幼苗γ-氨基丁酸积累的生理作用[J].山东农业科学,2011,43(7):35-37.doi:10.14083/j.issn.1001-4942.2011.07.030. Zhang H Y,Cui L N,Dong S T,Gao R Q,Sun A Q. Physiological role of hot stress-induced GABA accumulation in maize seedlings[J]. Shandong Agricultural Sciences,2011,43(7):35-37. [24] 李裕芳,朱昌华,甘立军. γ-氨基丁酸和脲素对玉米幼苗生长的影响[J].生物学杂志,2018,35(3):5-9,22.doi:10.3969/j.issn.2095-1736.2018.03.005. Li Y F,Zhu C H,Gan L J. The effect of exogenous γ-aminobutyric acid and urea on the growth in maize seedling[J]. Journal of Biology,2018,35(3):5-9,22. [25] Kathiresan A,Miranda J,Chinnappa C C,Reid D M. Γ-aminobutyric acid promotes stem elongation in Stellaria longipes:The role of ethylene[J]. Plant Growth Regulation, 1998,26(2):131-137.doi:10.1023/A:1006107815064. [26] Kalhor M S,Aliniaeifard S,Seif M,Asayesh E J,Bernard F,Hassani B,Li T. Title:Enhanced salt tolerance and photosynthetic performance:Implication of γ-amino butyric acid application in salt-exposed lettuce(Lactuca sativa L.)plants[J]. Plant Physiology and Biochemistry,2018,130:157-172.doi:10.1016/j.plaphy.2018.07.003. [27] 贾琰,任鹏飞,赵宏伟,邹德堂,王晋,杨亮. 孕穗期冷水胁迫下施用γ-氨基丁酸对寒地粳稻氮光合效率的调控效应[J].东北农业大学学报,2020,51(1):1-12.doi:10.19720/j.cnki.issn.1005-9369.2020.01.001. Jia Y,Ren P F,Zhao H W,Zou D T,Wang J,Yang L. Effect of γ-aminobutyric acid on nitrogen photosynthetic efficiency in cold-region Japonica rice under cold water stress at booting stage[J]. Journal of Northeast Agricultural University,2020,51(1):1-12. [28] Wang Y C,Gu W R,Meng Y,Xie T L,Li L J,Li J,Wei S. Γ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants[J]. Scientific Reports,2017,7:43609.doi:10.1038/srep43609. [29] Ansari M I,Chen S C. Biochemical characterization of gamma-aminobutyric acid(GABA):Pyruvate transaminase during rice leaf senescence[J]. International Journal of Integrative Biology,2009,6(1):27-32. [30] Jalil S U,Ahmad I,Ansari M I. Functional loss of GABA transaminase(GABA-T)expressed early leaf senescence under various stress conditions in Arabidopsis thaliana[J]. Current Plant Biology,2017,9/10:11-22.doi:10.1016/j.cpb.2017.02.001. [31] Uzma Jalil S,Khan M I R,Ansari M I. Role of GABA transaminase in the regulation of development and senescence in Arabidopsis thaliana[J]. Current Plant Biology,2019,19:100119.doi:10.1016/j.cpb.2019.100119. [32] 张华永. γ-氨基丁酸(GABA)对玉米幼苗抗逆性的效应、作用机理及调控[D].泰安:山东农业大学,2010. Zhang H Y.The effect function and control of γ-aminobutyric acid in maize seedling under adversity stress[D].Taian:Shandong Agricultural University,2010. [33] 王晓冬,解备涛,李建民,段留生. 外源γ-氨基丁酸(GABA)对小麦苗期耐涝性的影响[J].华北农学报,2010,25(1):155-160.doi:10.7668/hbnxb.2010.01.031. Wang X D,Xie B T,Li J M,Duan L S. Effects of exogenous GABA on waterlogged tolerance in wheat seedlings[J]. Acta Agriculturae Boreali-Sinica,2010,25(1):155-160. [34] 郑舒文,徐其隆,邹华文. γ-氨基丁酸对渍水胁迫下小麦产量的影响[J].湖北农业科学,2016,55(1):31-33.doi:10.14088/j.cnki.issn0439-8114.2016.01.009. Zheng S W,Xu Q L,Zou H W. Effect of GABA on yield of wheat under waterlogging condition[J]. Hubei Agricultural Sciences,2016,55(1):31-33. [35] 杨娜,伍宏,甘立军,朱昌华. 叶喷γ-氨基丁酸对小麦产量和品质的影响[J].中国粮油学报,2018,33(3):8-12,20.doi:10.3969/j.issn.1003-0174.2018.03.002. Yang N,Wu H,Gan L J,Zhu C H. Effect of foliar application of γ-aminobutyric acid on yield and quality of wheat[J]. Journal of the Chinese Cereals and Oils Association,2018,33(3):8-12,20. [36] 沙汉景,胡文成,贾琰,王新鹏,田雪飞,于美芳,赵宏伟. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J].作物学报,2017,43(11):1677-1688.doi:10.3724/SP.J.1006.2017.01677. Sha H J,Hu W C,Jia Y,Wang X P,Tian X F,Yu M F,Zhao H W. Effect of exogenous salicylic acid,proline,and γ-aminobutyric acid on yield of rice under salt stress[J]. Acta Agronomica Sinica,2017,43(11):1677-1688. [37] 谷海涛. 外源γ-氨基丁酸对孕穗期干旱胁迫下寒地粳稻氮代谢及产量的调控效应[D].哈尔滨:东北农业大学,2018. Gu H T. Effects of exogenous γ-aminobutyric acid on nitrogen metabolism and yield of Japonica rice in cold region under drought stress at booting stage[D].Harbin:Northeast Agricultural University,2018. |