[1] Jhanji S,Sadana U S. Genotypic variation in partitioning of dry matter and manganese between source and sink organs of rice under manganese stress[J]. Plant Cell Reports,2014,33(8):1227-1238. doi:10.1007/s00299-014-1611-x. [2] Jhanji S,Sadana U S,Shankar A,Shukla A K. Manganese influx and its utilization efficiency in wheat[J]. Indian Journal of Experimental Biology,2014,52(6):650-657. [3] Li L Z, Tu C, Wu L H, Peijnenburg W J G M, Ebbs S, Luo Y M.Pathways of root uptake and membrane transport of Cd2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola[J]. Environmental Toxicology and Chemistry,2017,36(4):1038-1046. doi:10.1002/etc.3625. [4] Song Y,Jin L,Wang X J. Cadmium absorption and transportation pathways in plants[J]. International Journal of Phytoremediation,2017,19(2):133-141. doi:10.1080/15226514.2016.1207598. [5] 刘意章,肖唐付,熊燕,宁增平,双燕,李航,马良,陈海燕.西南高镉地质背景区农田土壤与农作物的重金属富集特征[J].环境科学,2019,40(6):2877-2884. doi:10.19303/j.issn.1008-0384.2019.03.014. Liu Y Z,Xiao T F,Xiong Y,Ning Z P,Shuang Y,Li H,Ma L,Chen H Y.Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium,Southwestern China[J]. Environmental Science, 2019,40(6):2877-2884. [6] Liu H W,Wang H Y,Ma Y B,Wang H H,Shi Y. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants(Nicotiana tabacum L.)[J]. Chemosphere,2016,144:1960-1965. doi:10.1016/j.chemosphere.2015.10.093. [7] Fu X P,Dou C M,Chen Y X,Chen X C,Shi J Y,Yu M G,Xu J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. Journal of Hazardous Materials, 2011,186(1):103-107. doi:10.1016/j.jhazmat.2010.10.122. [8] Chen X H,Ouyang Y N,Fan Y C,Qiu B Y,Zhang G P,Zeng F R. The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root[J]. Journal of Experimental Botany,2018,69(21):5279-5291. doi:10.1093/jxb/ery293. [9] Zhang J,Martinoia E L,Young S. Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development[J]. Plant Cell Physiololgy,2018,59(7):1317-1325.doi:10.1093/pcp/pcy006. [10] Parvaiz A,Maryam S,Nazir A B,Mohd R W,Alvina G K,Lam-Son P T. Alleviation of cadmium toxicity in Brassica juncea L.(Czern. & Coss.)by calcium application involves various physiological and biochemical strategies[J]. PLoS One,2015,10(1):e0114571. doi:10.1371/journal.pone.0114571. [11] Stephan C. Safer food through plant science:reducing toxic element accumulation in crops[J]. Journal of Experimental Botany,2019,70(20):5537-5557. doi:10.1093/jxb/erz366. [12] Pittman J K. Managing the manganese:molecular mechanisms of manganese transport and homeostasis[J]. The New Phytologist,2005,167(3):733-742. doi:10.1111/j.1469-8137.2005.01453.x. [13] Wu F B,Dong J,Qian Q Q,Zhang G P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere,2005,60(10):1437-1446. doi:10.1016/j.chemosphere.2005.01.071. [14] Xin J L,Huang B F,Dai H W,Liu A Q,Zhou W J,Liao K B. Characterization of cadmium uptake,translocation,and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration[J]. Environmental Science and Pollution Research International,2014,21(12):7449-7456.doi:10.1007/s11356-014-2691-4. [15] Mélanie M,Jérôme C,Antoine G,Pascaline A,Nathalie L,Alain V,Pierre R. AtHMA3,a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J]. Plant Physiology, 2009,149(2):894-904.doi:10.1104/pp.108.130294. [16] Zhao J,Toshiro S,Mei H,Guo Y Q,Cheng N H,Kendal D H. Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3[J]. The Journal of Biological Chemistry Vol,2009,284(7):4605-4615. doi:10.1074/jbc.M804462200. [17] Santiago A,Rémy C,Carine A,Léon D,Frédéric D,David C,Loren C,Jean-François B,Stéphane M,Catherine C. Intracellular distribution of manganese by the trans-golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis[J]. The Plant Cell,2017,29(12):3068-3084.doi:10.1105/tpc.17.00578. [18] Sheng Y B,Yan X X,Huang Y,Han Y Y,Zhang C,Ren Y B,Fan T T,Xiao F M,Liu Y S,Cao S Q. The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell and Environment,2019,42(3):891-903. doi:10.1111/pce.13457. [19] Kühnlenz T,Holger S,Shimpei U,Stephan C. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil[J]. Journal of Experimental Botany,2014,65(15):4241-4253. doi:10.1093/jxb/eru195. [20] Liu X S,Feng F J,Zhang B Q,Wang M Q,Cao H W,Justice K R,Chen X,Yang Z M. OsZIP1 functions as a metal efflux transporter limiting excess zinc,copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019,19:283. doi:10.1186/s12870-019-1899-3. [21] Gu L J,Zhao M L,Ge M,Zhu S W,Cheng B J,Li X Y. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi[J]. Ecotoxicology and Environmental Safety,2019,30(186):109744. doi:10.1016/j.ecoenv.2019.109744. [22] Seiichiro H,Daigo S,Hitomi F. Toxicometallomics of cadmium,manganese and arsenic with special reference to the roles of metal transporters[J]. Toxicological Research,2019,35(4):311-317. doi:10.5487/TR.2019.35.4.311. [23] Ramin B,Mahsa M,Mohammad R B. Genotypic variation for cadmium tolerance in common bean(Phaseolus vulgaris L.)[J]. Ecotoxicology and Environmental Safety,2020,1(190):110178. doi:10.1016/j.ecoenv.2020.110178. [24] Kocadal K,Alkas F B,Battal D,Saygi S. Cellular pathologies and genotoxic effects arising secondary to heavy metal exposure:A review[J]. Human & Experimental Toxicology, 2020,39(1):3-13.doi:10.1177/0960327119874439. [25] 张杰.超积累植物东南景天Cd耐性和积累的分子机制[D].杭州:浙江大学,2015. Zhang J.Molecular mechanisms of Cd tolerance and accumulation in metal hyperaccumulator Sedum alfredii[D].Hangzhou:Zhejiang University,2015. [26] 胡玉龙,李雪华,赵苹艺,丁楚楚,徐甜甜,孙存华.镉胁迫对甘薯苗生理生化指标的影响[J].湖北农业科学,2015,54(4):858-861. doi:10.14088/j.cnki.issn0439-8114.2015.04.021. Hu Y L,Li H,Zhao P Y,Ding C C,Xu T T,Sun C H.Effects of cadmium stress on physiologic and biochemical characteristics of sweet potato[J]. Hubei Agricultural Science,2015,54(4):858-861. [27] Cheng S F,Huang C Y. Accumulation of cadmium uptake from soilin the edible root of root vegetables[J]. Journal of Environmental Management,2007,17:137. [28] 刘兰英,吕新,陈丽华,黄薇,涂杰峰,余华,上官亮,谢亚兴.土壤镉胁迫对甘薯品质和镉、锌吸收的影响[J].福建农业学报,2019,34(3):344-351. doi:10.19303/j.issn.1008-0384.2019.03.014. Liu L Y,Lü X,Chen L H,Huang W,Tu J F,Yu H,Shangguan L,Xie Y X. Cd and Zn uptakes and quality of sweetpotatoes under Cd-stress[J]. Fujian Journal of Agricultural Science,2019,34(3):344-351. [29] Huang B F,Xin J L,Dai H W,Zhou W J,Peng L J. Identification of low-Cd cultivars of sweet potato(Ipomoea batatas (L.)Lam.)after growing on Cd-contaminated soil:uptake and partitioning to the edible roots[J]. Environmental Science and Pollution Research International,2015,22(15):11813-11821.doi:10.1007/s11356-015-4449-z. [30] Xin J L,Dai H W,Huang B F. Assessing the roles of roots and shoots in the accumulation of cadmium in two sweet potato cultivars using split-root and reciprocal grafting systems[J]. Plant and Soil,2016,412(1-2):413-424. doi:10.1007/s11104-016-3079-7. [31] Huang B F,Dai H W,Zhou W J,Peng L J,Li M Z,Wan R J,He W T. Characteristics of Cd accumulation and distribution in two sweet potato cultivars[J]. International Journal of Phytoremediation,2019,21(4):391-398. doi:10.1080/15226514.2018.1524846. [32] Zhang D W, Dong F, Zhang Y, Huang Y L, Zhang C F. Mechanisms of low cadmium accumulation in storage root of sweetpotato(Ipomoea batatas L.)[J].Journal of Plant Physiology,2020,254:153262.doi:10.1016/j.jplph.2020.153262. [33] Tang J,Wang S Q,Hu K D,Huang Z Q,Li Y H,Han Z,Chen X Y,Hu L Y,Yao G F,Zhang H. Antioxidative capacity is highly associated with the storage property of tuberous roots in different sweetpotato cultivars[J]. Scientific Reports,2019,9(1):11141.doi:10.1038/s41598-019-47604-8. [34] Livak K J,Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 2001,25(4):402-408. doi:10.1006/meth.2001.1262. [35] Kim D Y,Lucien B,Masayoshi M,Enrico M,Lee Y S. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J]. Plant Journal,2007,50(2):207-218. doi:10.1111/j.1365-313X.2007.03044.x. [36] Ryuichi T,Yasuhiro I,Hiromi N,Naoko K N. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior,2011,6(11):1813-1816.doi:10.4161/psb.6.11.17587. [37] Wu Q Y,Toshiro S,Kimberly A W,Han J S,Chang K K,Kendal D H,Park S. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation[J]. Journal of Plant Physiology,2011,15,168(2):167-73. doi:10.1016/j.jplph.2010.06.005. [38] Shen J J,Qiao Z J,Xing T J,Zhang L P,Liang Y L,Jin Z P,Yang G D,Wang R,Pei Y X. Cadmium toxicity is alleviated by AtLCD and AtDCD in Escherichia coli[J]. Journal of Applied Microbiology,2012,113(5):1130-1138. doi:10.1111/j.1365-2672.2012.05408.x. [39] Natasha D,Surajit B,Mrinal K M. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation[J]. Plant Physiology and Biochemistry, 2016,105:297-309.doi:10.1016/j.plaphy.2016.04.049. [40] Magdalena M,Anna K,Anna P,Ewa M D,Ewelina P,Arnold G,Sophie F. Two metal-tolerance proteins,MTP1 and MTP4,are involved in Zn homeostasis and Cd sequestration in cucumber cells[J]. Journal of Experimental Botany, 2015,66(3):1001-1015. doi:10.1093/jxb/eru459. [41] Chen J,Sylvie L,Petr O,Azam N V,Saman A P,Cristina V,Jose L R,Wolf B F,Seung Y R. Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models[J]. Frontiers in Plant Science, 2012,21(3):124. doi:10.3389/fpls.2012.00124. [42] Wu Z Y,Liang F,Hong B M,Young Y C,Michael R S,Jeffrey F H,Heven S. An endoplasmic reticulum-bound Ca(2+)/Mn(2+)pump,ECA1,supports plant growth and confers tolerance to Mn(2+)stress[J]. Plant Physiology, 2002,130(1):128-137. doi:10.1104/pp.004440. [43] Chen J,Yang L B,Gu J,Bai X Y,Ren Y B,Fan T T,Han Y,Jiang L,Xiao F M,Liu Y S,Cao S Q. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana[J].The New Phytologist,2015,205(2):570-582.doi:10.1111/nph.13101. |