Hot Article

Please wait a minute...
  • Select all
    |
  • CAI Xiao, LIU Cunjing, ZHANG Sujun, LI Xinghe, WANG Haitao, TANG Liyuan, ZHANG Jianhong
    Abstract (99) PDF (65) RichHTML (10)

    Light-harvesting chlorophyll a/b binding proteins are important in plant photosynthesis and abiotic stress response.To study the characteristics of GhLhcb2A1 and its expression patterns and functions in low temperature and drought response in upland cotton,full-length CDS of GhLhcb2A1 gene was cloned from the leaf cDNA of Jimian 262 by PCR.Bioinformatic analysis was conducted to learn the basic characteristics of the gene.The expression patterns and functions in low temperature and drought response were evaluated by qRT-PCR and virus-induced gene silencing.It was shown that the length of GhLhcb2A1 CDS was 798 bp,encoding 265 amino acids.GhLhcb2A1 was highly expressed in leaves and was significantly up-regulated in leaves and roots under low temperature and drought treatment.Compared with the control,its expression maximized at 3 h under low temperature and drought in leaves with 17.42 and 30.03 folds increase respectively,whereas maximized at 6 h under low temperature and 12 h under drought in roots with 11.65 and 65.04 folds respectively.Subcellular localization assay verified that GhLhcb2A1 was expressed in the chloroplasts of cells.Compared with the control plants,GhLhcb2A1 silenced plants showed a more severe phenotype of water loss and dryness under both low temperatures and drought.The accumulated malondialdehyde content in the leaves of the silenced plants was significantly higher than that of the control,while the proline content and superoxide dismutase activity were significantly lower than those of the controls,suggesting that GhLhcb2A1 silenced plant reduced the resistance to low temperature and drought.The above results implied that this gene played a positive role in regulating low temperature and drought response.

  • SANG Yingying, LI Shanshan, BAO Wei, XU Dong, ZHANG Xue, ZHAO Yan
    Abstract (51) PDF (42) RichHTML (6)

    Soybean P34 protein mainly exists in soybean seeds,and its upstream promoter was likely to regulate the high expression of downstream genes in seeds.In order to further study the tissue expression pattern of soybean P34 protein gene and the regulatory activity of soybean P34 protein gene promoter,qRT-PCR was used to detect the expression of soybean P34 protein gene in soybean tissues.The 5'upstream sequence of soybean P34 protein gene(GmP34P)was cloned.The transcription initiation sites and cis-elements were analyzed by bioinformatics.The expression vector was constructed and the tobacco was transformed by Agrobacterium-mediated leaf disk method to detect GUS expression in transgenic tobacco.The results showed that the expression of P34 protein gene in soybean seeds was significantly higher than that in roots,stems,leaves and flowers.The length of GmP34P sequence obtained by cloning was 1 380 bp.Predictive analysis showed that the transcriptional start site of this sequence was base A at position 1 342,and the sequence contained a variety of cis-acting elements related to high seed expression,such as RY element,Skn-1 motif,2S seed protbanapa,etc.The plant expression vector pCAM-GmP34P containing GUS gene driven by GmP34P promoter was obtained.The positive transgenic plants were screened by hygromycin,PCR and RT-PCR.The results showed that GUS gene expression was extremely significant in transgenic tobacco seeds compared with other tissues by qRT-PCR with positive pCAM-GmP34P transgenic tobacco plants.GUS histochemical staining showed that the GmP34P promoter could regulate the high expression of downstream GUS gene in seeds.

  • GUO Yong, WEN Li, SHI Lihong, LI Chao, CHENG Kaikai, LUO Hanfang, LI Hairong, ZHOU Guodong, TANG Haiming
    Abstract (53) PDF (33) RichHTML (5)

    Soil nitrogen(N)cycling enzyme activity serves as a crucial indicator for characterizing soil fertility and N transformation.To investigate the effects of long-term application of fertilizers on the soil enzyme activities correlated with N cycling in rhizosphere soil of double-cropping rice fields in southern China,our project was based on a continue 37-year fertilization localization field experiment,including four fertilization treatments:without fertilizer as a control(CK),single fertilizer(MF),rice straw residue and mineral fertilizer(RF),and 30% organic manure and 70% mineral fertilizer(OM).The activities of N cycling enzymes in the rhizosphere soil were measured,and their correlation with soil chemical properties was analyzed.The results were as follows:compared to MF and CK treatments,OM and RF treatments significantly increased the contents of total N(TN),organic carbon(SOC),ammonium N($\mathrm{NH}_{4}^{+}-\mathrm{N}$),nitrate N($\mathrm{NO}_{3}^{-}-\mathrm{N}$)and microbial biomass N(SMBN)in rhizosphere soil,and also increased rice yield.The urease(Ure)and nitrite reductase(NiR)activities of rhizosphere soil in OM and RF treatments were significantly higher than those in MF and CK treatments.The RF treatment significantly increased rhizosphere soil hydroxylamine reductase(HyR)activities compared to the other three treatments,by 21.7%,13.0%,and 8.7%,respectively.This finding shown that OM treatment significantly increased protease(Pro),nitrogenase(Nit),nitrate reductase(NR)and nitrous oxide reductase(Nos)in rhizosphere soil compared to RF,MF and CK treatments.In comparison to MF treatment,OM treatments increased Pro,Nit,NR and Nos activities in rhizosphere soil by 20.0%,26.1%,426.1% and 26.7%,respectively.Nonetheless,the activity of nitric oxide reductase(Nor)on rhizosphere soil was considerably higher in the CK treatment than in MF,RF and OM treatments.Pearson correlation analysis revealed a substantial positive correlation between soil NR,NiR,Nit,Nos,Ure,Pro and soil TN,SOC,$\mathrm{NH}_{4}^{+}-\mathrm{N}$,$\mathrm{NO}_{3}^{-}-\mathrm{N}$,SMBN as well as rice yield.Soil Nor activity was observed to have a significantly negative connection with soil TN,SOC,$\mathrm{NH}_{4}^{+}-\mathrm{N}$,$\mathrm{NO}_{3}^{-}-\mathrm{N}$,SMBN and rice yield.The findings presented above showed that soil chemical properties and yield were substantially related to rhizosphere soil N cycling enzyme activities.Redundancy analysis(RDA)showed that the first order axis could explain 93.34% of the enzyme activity in rhizosphere soil and soil $\mathrm{NO}_{3}^{-}-\mathrm{N}$,TN and SOC contents were the key factors affecting the pattern of rhizosphere soil enzyme activities.Therefore,the long-term application of organic materials such as organic manure and rice straw can enhance soil chemical and biological characteristics,stimulate soil N cycling enzyme activities,and effectively fertilize paddy soils by partially replacing chemical fertilizers.

  • CHEN Keling, WANG Dequan, SONG Dewei, WANG Dahai, WANG Yuhua, GUAN Ensen, YANG Mingfeng, LIU Jiang, MA Xinghua
    Abstract (38) PDF (23) RichHTML (1)

    In order to provide production advice of high-quality upper tobacco leaves,field experiment was carried out to elucidate the effects of nitrogen application on the growth,development,carbon and nitrogen metabolism of upper leaves of different tobacco varieties.Three treatments,37.5(LN),75.0(MN)and 112.5 kg/ha nitrogen application rate(HN)were conducted with NC89 and Yunyan 87 as the test varieties.The effects of different treatments on the agronomic traits,photosynthetic characteristics,leaf tissue structure,key enzymes activity of carbon and nitrogen metabolism,and chemical composition of the upper leaves of were studied.The results showed that the leaf length,leaf width,leaf area,and leaf dry mass of the upper leaves of both varieties were significantly improved with the increased of nitrogen application rates.At 115 days after transplanting(DAT),the leaf area of NC89 and Yunyan 87 of HN were significantly increased by 63.10% and 68.43% compared to LN,respectively.Increasing nitrogen rate improved the leaf chlorophyll content of NC89,the leaf chlorophyll content of HN was 6.67%—37.50% higher than that of LN,respectively.The leaf net photosynthetic rate was notably improved by increasing nitrogen rate of Yunyan 87,especially at 70 DAT and 80 DAT.The leaf palisade tissue,leaf spongy tissue,and leaf thickness were markedly promoted with the increased nitrogen application rate on 85—115 DAT.The palisade tissue and spongy tissue thickness of LN and MN were almost stable from 95 to 115 DAT,but HN improved by 9.82%—14.08% and 10.72%—13.72% respectively.The leaf carbon content and leaf carbon and nitrogen ratio of both varieties were significantly decreased by reduced nitrogen rate,while leaf nitrogen content significantly increased.The activities of invertase,sucrose phosphate synthase,sucrose synthase,and glutamate synthase of both varieties were increased with the increased nitrogen application rate.HN decreased the amylase activity of Yunyan 87,but increased that of NC89.At 115 DAT,the amylase activity of HN of Yunyan 87 was 27.53% lower than MN,while HN increased amylase activity by 33.86% and 21.74% compared to LN and MN of NC89,respectively.The activity of glutamine synthetase of Yunyan 87 significantly increased with the increased nitrogen application rate,while there was no significant difference among different treatments of NC89.The content of flue-cured tobacco leaf reducing sugar and total sugar were reduced,but the content of nicotine and total nitrogen were improved with increased nitrogen application rate.Under the same nitrogen application rate,the content of flue-cured tobacco leaf nicotine,total nitrogen,and potassium of Yunyan 87 were higher than NC89,while the content of reducing sugar,content of total sugar(except LN),sugar and nicotine ratio,and nitrogen and nicotine ratio were lower than NC89.The effect of nitrogen application rate on upper leaves of tobacco varieties is difference.Increasing nitrogen application rate could promote the growth,development and carbon metabolism,reduce sugar and nicotine ratio and nitrogen and nicotine ratio,and improve the coordination of chemical components of NC89.However,increasing nitrogen application rate could lead to excessive nitrogen metabolism,delay the transformation from nitrogen metabolism to carbon accumulation metabolism,and cause late maturity of Yunyan 87.

  • PENG Keyan, ZHAO Kainan, ZHOU Fabao, DIAO Yanbin, CHEN Guangzhou, LI Shengdong
    Abstract (44) PDF (47) RichHTML (1)

    To clarify the regulatory effect of nitrogen(N)fertilizer reduction and postponing on the productivity of wheat-maize double cropping system in Huang-Huai-Hai Plain.The annual N fertilizer experiment of summer maize and winter wheat was established of four N application systems:annual N fertilizer application 400 kg/ha of traditional farmer treatment(F400),10% reduction of annual N fertilizer(FN),20% reduction of annual N fertilizer(FH),and 30% reduction of annual N fertilizer(FL)from 2020 to 2023 at Jiyang Experimental Base of the Shandong Academy of Agricultural Sciences in Jinan.The grain yield,aboveground N accumulation characteristics,N use efficiency,and the nitrate residue after harvest in the 0—200 cm soil layer of wheat-maize double cropping system were tested,in order to provide the theoretical basis for further optimization of N fertilizer management in Huang-Huai-Hai Plain.The results indicated that N fertilizer postponing was optimized the grain yield of summer maize and winter wheat under the condition of N reduction,and the averaged across the three years,FL significantly increased by 9.2%—18.1%,13.5%—20.5%,and 11.1%—19.1%,respectively,compared with F400 and FN.N fertilizer postponing improved the N accumulation rate,and promoted aboveground N accumulation at wheat-maize different growth stages,and the averaged across the three years,FL significantly increased plant N accumulation by 5.7%—12.3% and 5.0%—12.8% under silking and maturity,respectively,compared with F400,FN,and FH,as well as 8.2%—17.2% in grain N accumulation.For winter wheat,FL and FH treatments were significantly higher than F400 and FN at jointing,anthesis,and maturity,and the averaged across the three years,FL and FH significantly increased by 23.4%—28.1%,20.7%—26.3%,and 12.6%—20.8%,respectively,compared with F400,FN and FH,at the same time the grain N accumulation under FL significantly increased by 16.4%,15.0% and 5.8%,respectively,compared with F400 and FN.N fertilizer postponing optimized the N use efficiency of wheat-maize double crop system,the averaged across the three years,FL significantly increased N uptake efficiency by 4.8%—57.7% and 32.0%—72.4% of summer maize and winter wheat,respectively,compared with F400,FN,and FH;and FL significantly increased N partial factor productivity by 68.8% and 40.4% in summer maize,respectively,compared with F400 and FN,as well as by 38.4%—71.8% in winter wheat compared with F400,FN,and FH.At harvest of summer maize and winter wheat,the soil nitrate residue was mainly enrichment in the 0—40 cm soil layer under four N application systems,the averaged across the three years,accounted for 40.0%,38.9%,44.9%,42.5% and 37.3%,36.9%,46.7%,38.3% of the 0—200 cm soil layer,respectively.In addition,the obvious accumulated effects in 0—200 cm soil layer nitrate residue under F400 and FN treatments at harvest of summer maize and winter wheat,but there was the relative balance was achieved under FL and FH treatments.In conclusion,a 30% reduction of annual N fertilizer by N fertilizer postponing could optimize plant N accumulation characteristics and realized synergistic improve grain yield and N use efficiency.Therefore,FL treatment was an optimal N application system for realizing the collaborative target of high-yield,high-efficiency,and environment-friendly of wheat-maize double cropping system in Huang-Huai-Hai Plain.

  • LAN Huiqing, MENG Tiantian, ZHANG Xiangqian, WANG Weini, ZHANG Jun, CHEN Liyu, LU Zhanyuan, SUN Xia
    Abstract (51) PDF (36) RichHTML (3)

    The aim was to clarify the effects of different nitrogen application levels on soil organic nitrogen fractions and nitrogen use efficiency in maize fields in the central-western region of Inner Mongolia,so as to provide a reference for the scientific management of soil nitrogen and sustainable development of modern agriculture.Six nitrogen application levels were set up,N0(0 kg/ha),N8(120 kg/ha),N12(180 kg/ha),N16(240 kg/ha),N20(300 kg/ha),and N24(360 kg/ha).The dynamic changes with effects of nitrogen application on soil total nitrogen content,particulate organic nitrogen content,light fraction organic nitrogen content and heavy organic nitrogen content,as well as maize yield and nitrogen use efficiency were analyzed at different soil layers at pre-sowing and post-harvest.The results showed that soil total nitrogen,particulate organic nitrogen,light fraction organic nitrogen,and heavy fraction organic nitrogen content decreased with deepening of the soil layer at the same nitrogen application level;soil total nitrogen content at pre-sowing increased with the nitrogen application levels.Soil total nitrogen content in the N16,N20,and N24 treatments was significantly higher than that in the N0,N8,and N12 treatments at post-harvest.Soil particulate organic nitrogen content of N16 treatment was highest in the 0—10 cm,10—20 cm,and 20—40 cm soil layers at pre-sowing,with 0.14,0.13,and 0.09 g/kg,respectively.At post-harvest,N16 treatment had the highest content in the 10—20 cm,20—40 cm,and 40—60 cm soil layers,with 0.19,0.10,and 0.09 g/kg,respectively.The highest increase of soil light fraction organic nitrogen content of 37.27% was in the N16 treatment,and the highest increase of soil heavy fraction organic nitrogen content of 7.35% was in the N24 treatment,followed by the N16 treatment,at 6.84%.The N16 treatment had the highest maize biological yield of 31 443.50 kg/ha;the highest maize economic yield of 18 526.47 kg/ha;and the nitrogen use efficiency decreased with the increase in nitrogen fertilizer application levels,N16 treatment in the nitrogen harvest index was the highest, at 79.20%.In conclusion,the more suitable nitrogen fertilizer application level in the central-western region of Inner Mongolia should be maintained under 240 kg/ha,in order to achieve the best soil nitrogen management ang crop yield.

  • FENG Fen, LI Yanxia, WANG Jinpeng, DONG Yiwen, LUORENG Zhuoma, WANG Xingping
    Abstract (255) PDF (26) RichHTML (4)

    In order to investigate the expression pattern and biological function of lncRNA TCONS_00143126 in E.coli type mastitis of cows in depth.This study used cDNA from bovine mammary epithelial cells as a template,and confirmed the presence of lncRNA TCONS_00143126 using PCR cloning and sequencing techniques.Subcellular localization analysis of lncRNA was performed,and potential target miRNAs and genes were predicted.The potential mechanism of its action in bovine mastitis was explored through KEGG pathway enrichment analysis.In addition,LPS was used to induce bMECs to construct an in vitro model of bovine mastitis,and the expression of lncRNA TCONS_00143126 in LPS-induced bMECs at 6,12 and 24 h was detected by RT-qPCR.The results showed that lncRNA TCONS_00143126 was real,and its expression was significantly up-regulated in LPS-induced bMECs,and it was mainly distributed in the nucleus.The results of target gene prediction and KEGG enrichment analysis showed that lncRNA TCONS_00143126 might regulate inflammatory signaling pathways such as JAK-STAT,mTOR and MAPK by targeting miRNAs(bta-miR-133a,bta-miR-193a-5p and bta-miR-375,etc.)and target genes(IFNE,SLC2A10,MEX3B),and then play a role in the inflammation of bovine mammary epithelial cells.

  • HUANG Zhiqiang, WANG Weimin, ZHANG Deyin, ZHAO Yuan, ZHANG Yukun, XU Dan, YANG Xiaobin, MA Zongwu, HE Lijuan, CAI Youxin, LIU Xiaoqiang, ZHANG Xiaoxue
    Abstract (33) PDF (21) RichHTML (3)

    Anoctamin 5(ANO5)is a multichannel membrane protein localized in the sarcoplasmic and sarcoplasmic reticulum that primarily plays a role in myosin membrane repair and phospholipid scrambling,mutations in the ANO5 gene can lead to jaw hypoplasia as well as various myopathies.It aimed to investigate the association of SNPs in the ANO5 gene with fat deposition traits in sheep.A population of 1 005 healthy and clearly genealogical Hu sheep male lambs was selected for the study,and PCR amplification and KASPar typing techniques were used to detect the locus polymorphisms of the ANO5 gene in the experimental population and analyze the associations with fat deposition traits.The expression level of ANO5 gene in different tissues was analyzed by qPCR.The results showed that sheep ANO5 gene was widely expressed in a variety of tissues in Hu sheep,and the highest expression of ANO5 gene was found in heart tissue compared with other tissues.Three genotypes of CC,CT and TT with the g.58010 C>T polymorphic locus were detected in the 10th intron of the sheep ANO5 gene.Descriptive statistics showed that the perirenal fat weight was the most different and had the highest degree of variability compared with other fat weights.Correlation analysis showed that fat deposition related traits were positively correlated with growth and feed efficiency traits,and the results of association analyses showed that the polymorphic locus was significantly associated with perirenal fat weight and its related traits in the Hu sheep.Among them,the perirenal fat weight of individuals with CC genotype was significantly lower than that of individuals with TT genotype.In conclusion,the g.58010 C>T mutation locus of the ANO5 gene can be used as a candidate molecular marker for perirenal fat deposition traits in Hu sheep.

  • GUO Xiulin, QI Runsi, MENG Xiangzhao, ZHANG Huaning, MA Zhenyu, DUAN Shuonan, LI Guoliang, LIU Zihui, SHANG Zhonglin
    Abstract (158) PDF (101) RichHTML (14)

    As a key regulating factor in response to various abiotic stresses,plant heat shock transcription factor (Hsf) has a big family,and diverse structure,characteristics and functions.Hsf not only directly regulates Hsp and other relative gene expression and participates in the processes of response and adaption to various abiotic stresses,but also mediates many life activities regulation.Since the first Hsf was cloned from yeast in the 1980s,more and more Hsfs from other species have been identified and studied.In the previous reports,the identification of the Hsf family in plants was performed only in model species such as Arabidopsis and tomato.Furthermore,the studies is mainly focused on the HsfA subfamily,with few studies on the HsfB subfamily.And,the precise function of HsfC family is also largely unknown.With global climate change,the frequent occurrence of extremely high temperature events has seriously threatened the yield and quality of wheat,maize and other crops.To deal with the threat posed by heat stress,unraveling the mechanism of thermotolerance,identifying functional the targeted Hsfs and improving stress tolerance of crop through biotechnology methods is important.The number of Hsf family in field crops is various,the genome is complex,and the related research started lately compared with model species.To this end,our laboratory began to study the Hsf family of crops in 2009.Based on the latest genomic information,we confirmed the number of members,the modular structure and the spatio-temporal expression pattern of Hsf family.At the same time,with the help of transgenic wheat and mutant by genetic transformation and the CRISPR/Cas9 clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein mediated genome editing technology,several Hsfs were cloned and their regulatory functions of thermotolerance were identified,and some mechanism of thermotolerance was clarified.Our research not only enriched the theoretical basis of thermotolerance,but also provided new germplasm for biological breeding.At present,many studies have reported on functional identification and transcriptional regulation of Hsfs,however,evidences lack on which upstream component mediate Hsf's participation in regulation of thermotolerance,and the related mechanism is still unknown.Based on previous research results about wheat and maize Hsf families of lab,and many relative reports published in public,we reviewed the roles and mechanisms of plant Hsf in regulating process reported in recent years,aiming to promote research in illustrating the extensive and special roles and regulation network of plant Hsf family further,and dig useful genes and selective QTLs for biological breeding for plant thermotolerance.

  • KANG Chen, TIAN Zhejuan, GAO Kang, HAO Lingyu, LIU Wei, LI Yadong, WU Zhiming
    Abstract (244) PDF (231) RichHTML (45)

    Bioinformatics and expression patterns of Dicer-like(DCL),Argonaute(AGO)and RNA-dependent RNA polymerase(RDR)gene families in the whole genome of Solanum habrochaites were analyzed,so as to provide references for further study on the functions of DCL,AGO and RDR gene families in the response of S.habrochaites to abiotic and viral infection.Using Arabidopsis thaliana DCL,AGO and RDR genes as reference sequences,the genome of S.habrochaites LA1777 was searched by local perl language and software such as Pfam and SMART,and the members of ShDCL,ShAGO and ShRDR gene families were determined.Bioinformatics analysis of DCL,AGO and RDR family genes in S.habrochaites was carried out by means of ExPASy,GSDS 2.0,MEGA,Tbtools and SWISS-MODEL.According to abiotic stress treatment,Tomato chlorosis virus(ToCV)treatment and Real-time Fluorescence Quantitative PCR technology,the expression patterns of these genes were analyzed.Seven ShDCL,15 ShAGO and 6 ShRDR genes were identified from S.habrochaites,which were distributed on chromosome 5,7 and 6 respectively.The encoded proteins were similar in structure to DCL,AGO and RDR in other plants,and all of them contained conserved domains unique to this family.Phylogenetic analysis showed that these genes were divided into 4 subgroups,and there were high structural and functional similarities between S.habrochaites and S.lycopersicum.ShDCL2a,ShDCL2c,ShDCL3,ShDCL4,ShAGO1b,ShAGO3,ShAGO4b,ShAGO5,ShAGO7,ShAGO10a,ShAGO10b,ShRDR1,ShRDR2,ShRDR3a,ShRDR6a and ShRDR6b were significantly up-regulated after various abiotic stresses and ToCV infection.It is speculated that these genes play important roles in abiotic stress and virus infection.

  • SONG Jiaxin, LI Mingxuan, LI Ai, SU Chaijing, ZHANG Weihua, CAI Zeyu, WU Ying
    Abstract (126) PDF (78) RichHTML (13)

    In order to investigate the function of watermelon calcium-dependent protein kinase (CDPK) in grafted seedlings and abiotic stress environments, this study used RT-PCR technology to clone the ClCDPK(Cla97C01G019720) gene from watermelon grafted seedlings and performed bioinformatics analysis on it. Further designed specific primers with Kpn Ⅰ and Sal Ⅰ enzyme cleavage sites based on the ClCDPK sequence,conducted amplification and double enzyme cleavage, and connected with pCAMBIA1300 to successfully construct the expression vector pCAMBIA1300-35S-ClCDPK for the target gene.Using RT-qPCR technology, the gene expression levels of ClCDPK were measured in self rooted seedlings (ZG) and grafted seedlings (JJ) after being subjected to salt and drought stress, respectively.The results showed that the ORF of ClCDPK gene was 1 647 bp, encoding 548 amino acids. Its protein contained STKc_CAMK and FRQ1 functional domains, and was a hydrophilic protein. Subcellular localization prediction showed that the protein was located in the nucleus. Evolutionary tree analysis of ClCDPK with CDPK from six other plants revealed that it was closely related to CDPK from Cucurbitaceae melons and pumpkins, with protein sequence homology alignment exceeding 92.64%, indicating high homology.The RT-qPCR expression results showed that the expression level of ClCDPK in grafted seedlings was significantly higher than that in self rooted seedlings. With the duration of stress, the expression levels of ClCDPK in grafted and self rooted seedlings first increased and then decreased, and under the same stress treatment, the expression level of ClCDPK in grafted seedlings was higher than that in self rooted seedlings.This study indicated that ClCDPK responded positively to salt and drought stress, and the ability of grafted seedlings to resist stress was higher than that of self rooted seedlings. It is speculated that ClCDPK is one of the key factors in watermelon's response to grafting, thereby improving the salt and drought resistance of watermelon grafted seedlings.

  • GONG Yongjie, TIAN Haiyan, WEI Jiaping, CUI Junmei, WU Zefeng, DONG Xiaoyun, ZHENG Guoqiang, WANG Ying, WANG Xiaoxia, LIU Zigang
    Abstract (93) PDF (60) RichHTML (13)

    In order to study the problem of strong winter/spring Brassica napus seed germination and flowering period under different winter sowing dates.Two strong winter rapeseeds and two spring rapeseeds provided by Gansu Agricultural University were used as materials.The experiment was carried out in the experimental field of Gansu Agricultural University from October 2022 to August 2023.The winter rapeseeds was carried out on October 11,2022.The winter/spring rapeseeds was sown every 20 days from December 10,2022,and the sowing ended on February 8,2023.The flowering period was recorded,and the germination seeds of winter rapeseed were sampled every 20 days to determine their physiological and biochemical characteristics and analyze the expression characteristics of vernalization genes(FLC,VRN2,FRI,FT).The results showed that the flowering period of winter/spring rape seeds was different by 22—34 days.The difference of flowering time between autumn sowing and spring sowing was 4—7 days.The flowering time of winter rapeseed in autumn sowing(October 11 th)was close to that of spring rapeseed under different winter sowing dates(December 10th,December 30th,January 19th,February 8th),and the flowering overlap time was as long as 15—20 days.With the delay of the sowing date,the relative expression levels of FLC,FRI and FT genes in germinating seeds of winter sowing were down-regulated.The relative expression of VRN2 gene was down-regulated in the early vernalization and up-regulated in the late vernalization.The activities of superoxide dismutase(SOD),peroxidase(POD),catalase(CAT)and the contents of soluble protein(SP),gibberellin(GA3)and salicylic acid(SA)in germinating seeds were increased in the early vernalization,but those were decreased in the late vernalization.The contents of malondialdehyde(MDA)and abscisic acid(ABA)were increased in rapeseed germinating with the increase of vernalization time.

News More
High impact papers More
Copyright
QR Code
  • 《Acta Agriculturae Boreali-Sinica》Official Website

  • Wechat Official Account