[1] |
|
|
Weng X L, Jiang L Q, Tang S P, Zhang W Y, Zhu K Y, Wang Z Q, Yang J C, Xu Y J. Progress on relationship between starch,protein,lipids and taste quality of steaming and cooking in rice[J]. Journal of Huazhong Agricultural University, 2024, 43(3):121-131.
|
[2] |
Guo T, Liu X L, Wan X Y, Weng J F, Liu S J, Liu X, Chen M J, Li J J, Su N, Wu F Q, Cheng Z J, Guo X P, Lei C L, Wang J L, Jiang L, Wan J M. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice( Oryza sativa)[J]. Journal of Integrative Plant Biology, 2011, 53(8):598-607.doi: 10.1111/j.1744-7909.2011.01041.x.
|
[3] |
Chen P L, Lou G M, Wang Y F, Chen J X, Chen W F, Fan Z L, Liu Q, Sun B R, Mao X X, Yu H, Jiang L Q, Zhang J, Lyu S W, Xing J L, Pan D J, Li C, He Y Q. The genetic basis of grain protein content in rice by genome-wide association analysis[J]. Molecular Breeding, 2022, 43(1):1.doi: 10.1007/s11032-022-01347-z.
|
[5] |
徐令旗, 郭晓红, 张佳柠, 赵洋, 李晓蕾, 刘绍峰, 崔致远, 安懿亮, 吕艳东. 不同有机肥对旱直播水稻品质的影响[J]. 华北农学报, 2022, 37(1):137-146.doi: 10.7668/hbnxb.20192421.
|
|
Xu L Q, Guo X H, Zhang J N, Zhao Y, Li X L, Liu S F, Cui Z Y, An Y L, Lyu Y D. The effect of organic fertilizer on the quality of dry direct-seeding rice[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(1):137-146.
|
[6] |
Wakamatsu K I, Sasaki O, Uezono I, Tanaka A. Effect of the amount of nitrogen application on occurrence of white-back kernels during ripening of rice under high-temperature conditions[J]. Japanese Journal of Crop Science, 2008, 77(4):424-433.doi: 10.1626/jcs.77.424.
|
[7] |
|
|
Yue H L, Zhang M L, Cheng X J, Liu K, Wan B J, Zhu J W, Tang H S, Sun M F. Factors influencing characteristic values of RVA spectrum and their relationship with rice taste quality:a review[J]. Jiangsu Agricultural Sciences, 2023, 51(1):16-22.
|
[8] |
|
|
Gu C J, Yang H Q, Jiang W L, Shu X L, Zhang G C, Wu X J, Chen X Q. The content analysis of total protein and soluble protein in different colored rice varieties[J]. Molecular Plant Breeding, 2017, 15(3):1035-1042.
|
[9] |
张肖肖, 殷学贵, 陆建农, 黄冠荣, 张柳琴, 刘朝裕, 林海虹, 左金鹰. 蓖麻收获指数相关性状QTL定位及候选基因分析[J]. 华北农学报, 2024, 39(3):77-87.doi: 10.7668/hbnxb.20194641.
|
|
Zhang X X, Yin X G, Lu J N, Huang G R, Zhang L Q, Liu C Y, Lin H H, Zuo J Y. QTL mapping and candidate gene analysis for harvest index and related traits in castor[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(3):77-87.
|
[10] |
Mei D Y, Zhu Y J, Fan Y. Mapping QTL for rice milling and appearance quality traits in indica rice[J]. Hereditas, 2012, 34(12):1591-1598.doi: 10.3724/sp.j.1005.2012.01591.
|
[11] |
|
|
Li X P, Miao B G, Ma W D, Zhang X G, Li J M, Zhang S Q. Map integration of QTLs related to protein content and fat content of rice[J]. Molecular Plant Breeding, 2017, 15(7):2662-2670.
|
[12] |
Peng B, Kong H L, Li Y B, Wang L Q, Zhong M, Sun L, Gao G J, Zhang Q L, Luo L J, Wang G W, Xie W B, Chen J X, Yao W, Peng Y, Lei L, Lian X M, Xiao J H, Xu C G, Li X H, He Y Q. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014,5:4847.doi: 10.1038/ncomms5847.
|
[13] |
Yang Y H, Guo M, Sun S Y, Zou Y L, Yin S Y, Liu Y N, Tang S Z, Gu M H, Yang Z F, Yan C J. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1):1949.doi: 10.1038/s41467-019-09919-y.
|
[14] |
Chattopadhyay K, Behera L, Bagchi T B, Sardar S S, Moharana N, Patra N R, Chakraborti M, Das A, Marndi B C, Sarkar A, Ngangkham U, Chakraborty K, Bose L K, Sarkar S, Ray S, Sharma S. Detection of stable QTLs for grain protein content in rice( Oryza sativa L.) employing high throughput phenotyping and genotyping platforms[J]. Scientific Reports, 2019, 9(1):3196.doi: 10.1038/s41598-019-39863-2.
pmid: 30824776
|
[15] |
Wu Y B, Li G, Zhu Y J, Cheng Y C, Yang J Y, Chen H Z, Song X J, Ying J Z. Genome-wide identification of QTLs for grain protein content based on genotyping-by-resequencing and verification of qGPC1-1 in rice[J]. International Journal of Molecular Sciences, 2020, 21(2):408.doi: 10.3390/ijms21020408.
|
[16] |
Sasaki T, Burr B. International rice genome sequencing project:the effort to completely sequence the rice genome[J]. Current Opinion in Plant Biology, 2000, 3(2):138-142.doi: 10.1016/S1369-5266(99)00047-3.
|
[17] |
|
|
Liu Z Q, Zhang H Q, He J W, Gui J X. Genome-wide association analysis of rice seed dehydration rate at maturity stage[J]. Chinese Journal of Rice Science, 2024, 38(2):150-159.
|
[18] |
Xie X R, Zhang Q J, Liu Y G. Rice GWAS-to-gene uncovers the polygenic basis of traits[J]. Science China Life Sciences, 2024, 67(12):2783-2785.doi: 10.1007/s11427-024-2716-5.
|
[19] |
Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4):447-456.doi: 10.1038/ng.3518.
|
[20] |
Misra G, Anacleto R, Badoni S, Butardo V, Molina L, Graner A, Demont M, Morell M K, Sreenivasulu N. Dissecting the genome-wide genetic variants of milling and appearance quality traits in rice[J]. Journal of Experimental Botany, 2019, 70(19):5115-5130.doi: 10.1093/jxb/erz256.
|
[21] |
Praphasanobol P, Purnama P R, Junbuathong S, Chotechuen S, Moung-Ngam P, Kasettranan W, Paliyavuth C, Comai L, Pongpanich M, Buaboocha T, Chadchawan S. Genome-wide association study of starch properties in local Thai rice[J]. Plants(Basel,Switzerland), 2023, 12(18):3290.doi: 10.3390/plants12183290.
|
[22] |
Mo Y J, Jeung J U, Shin Y S, Park C S, Kang K H, Kim B K. Agronomic and genetic analysis of Suweon 542,a rice floury mutant line suitable for dry milling[J]. Rice, 2013, 6(1):37.doi: 10.1186/1939-8433-6-37.
|
[23] |
Zhao C F, Zhao L, Zhao Q Y, Chen T, Yao S, Zhu Z, Zhou L H, Nadaf A B, Liang W H, Lu K, Zhang Y D, Wang C L. Genetic dissection of eating and cooking qualities in different subpopulations of cultivated rice( Oryza sativa L.) through association mapping[J]. BMC Genetics, 2020, 21(1):119.doi: 10.1186/s12863-020-00922-7.
|
[24] |
Singh S K, Habde S, Singh D K, Khaire A, Mounika K, Majhi P K. Studies on character association and path analysis studies for yield,grain quality and nutritional traits in F 2 population of rice( Oryza sativa L.)[J]. Electronic Journal of Plant Breeding, 2020, 11(3):969-975.doi: 10.37992/2020.1103.158.
|
[25] |
|
|
Liu Y, Du H D, Sun Z Y, Yu X R, Li P F. Genome-wide association analysis and candidate genes screening for Zn content in rice seeds[J]. Journal of Plant Genetic Resources, 2024, 25(9):1516-1523.
|
[26] |
Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms,SnpEff:SNPs in the genome of Drosophila melanogaster strain w1118; Iso-2; Iso-3[J]. Fly, 2012, 6(2):80-92.doi: 10.4161/fly.19695.
|
[27] |
Ji H, Shin Y, Lee C, Oh H, Yoon I S, Baek J, Cha Y S, Lee G S, Kim S L, Kim K H. Genomic variation in Korean Japonica rice varieties[J]. Genes, 2021, 12(11):1749.doi: 10.3390/genes12111749.
|
[28] |
|
|
Du Q L, Jiang J M, Chen M Q, Ning N, Ren M J, Li X Y, Xie X.Cloning, expression analysis and prokaryotic expression of heat shock protein HSP70 gene in rice[J]. Journal of Plant Protection, 2021, 48(3):620-629.
|
[29] |
Hayer-Hartl M, Bracher A, Hartl F U. The GroEL GroES chaperonin machine:a nano-cage for protein folding[J]. Trends in Biochemical Sciences, 2016, 41(1):62-76.doi: 10.1016/j.tibs.2015.07.009.
|
[30] |
Dehghan A. Genome-wide association studies[M]// Genetic Epidemilogy. New York: Springer New York,2018:37-49.doi: 10.1007/978-1-4939-7868-7_4.
|
[31] |
Yang Y H, Guo M, Li R D, Shen L, Wang W, Liu M, Zhu Q, Hu Z, He Q W, Xue Y, Tang S Z, Gu M H, Yan C J. Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping of qPC-1 in rice( Oryza sativa L.)[J]. Molecular Breeding, 2015, 35(6):130.doi: 10.1007/s11032-015-0328-z.
|
[32] |
Yun Y T, Chung C T, Lee Y J, Na H J, Lee J C, Lee S G, Lee K W, Yoon Y H, Kang J W, Lee H S, Lee J Y, Ahn S N. QTL mapping of grain quality traits using introgression lines carrying Oryza rufipogon chromosome segments in Japonica rice[J]. Rice, 2016, 9(1):62.doi: 10.1186/s12284-016-0135-0.
|
[33] |
Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1):32-39.doi: 10.1038/ng.1018.
|
[34] |
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions[J]. Autophagy, 2023, 19(6):1619-1641.doi: 10.1080/15548627.2022.2160564.
|
[35] |
Jiang L W, Wang P G, Jia H C, Wu T T, Yuan S, Jiang B J, Sun S, Zhang Y X, Wang L W, Han T F. Haplotype analysis of GmSGF14 gene family reveals its roles in photoperiodic flowering and regional adaptation of soybean[J]. International Journal of Molecular Sciences, 2023, 24(11):9436.doi: 10.3390/ijms24119436.
|
[4] |
Okadome H. Application of instrument-based multiple texture measurement of cooked milled-rice grains to rice quality evaluation[J]. Japan Agricultural Research Quarterly, 2005, 39(4):261-268.doi: 10.6090/jarq.39.261.
|
[36] |
Cheng H Y, Concepcion G T, Feng X W, Zhang H W, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm[J]. Nature Methods, 2021, 18(2):170-175.doi: 10.1038/s41592-020-01056-5.
|
[37] |
Min M H, Khaing A A, Chu S H, Nawade B, Park Y J. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. Journal of Integrative Agriculture, 2024, 23(8):2525-2540.doi: 10.1016/j.jia.2023.12.004.
|
[38] |
Deng B W, Zhang Y N, Zhang F, Wang W S, Xu J L, Zhang Y, Bao J S. Genome-wide association study of cooked rice textural attributes and starch physicochemical properties in indica rice[J]. Rice Science, 2024, 31(3):300-316.doi: 10.1016/j.rsci.2024.02.008.
|
[39] |
Yang L J, Wakasa Y, Kawakatsu T, Takaiwa F. The 3'-untranslated region of rice glutelin GluB-1 affects accumulation of heterologous protein in transgenic rice[J]. Biotechnology Letters, 2009, 31(10):1625-1631.doi: 10.1007/s10529-009-0056-8.
|
[40] |
Hervás R, Oroz J. Mechanistic insights into the role of molecular chaperones in protein misfolding diseases:from molecular recognition to amyloid disassembly[J]. International Journal of Molecular Sciences, 2020, 21(23):9186.doi: 10.3390/ijms21239186.
|
[41] |
Genest O, Wickner S, Doyle S M. Hsp90 and Hsp70 chaperones:collaborators in protein remodeling[J]. Journal of Biological Chemistry, 2019, 294(6):2109-2120.doi: 10.1074/jbc.REV118.002806.
|