[1] |
Arruda P. Genetically modified sugarcane for bioenergy generation[J]. Current Opinion in Biotechnology, 2012, 23(3):315-322.doi: 10.1016/j.copbio.2011.10.012.
doi: 10.1016/j.copbio.2011.10.012
pmid: 22093808
|
[2] |
doi: 10.19415/j.cnki.1673-890x.2016.15.015
|
|
Ban Q L. Ban Q L. Discussion on the present situation and development countermeasures of sugarcane planting[J]. South China Agriculture, 2016, 10(5):29-30.
|
[3] |
Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq[J]. PLoS One, 2014, 9(8):e106476.doi: 10.1371/journal.pone.0106476.
doi: 10.1371/journal.pone.0106476
URL
|
[4] |
Ling H, Fu X Q, Huang N, Zhong Z F, Su W H, Lin W X, Cui H T, Que Y X. A sugarcane smut fungus effector simulates the host endogenous elicitor peptide to suppress plant immunity[J]. The New Phytologist, 2022, 233(2):919-933.doi: 10.1111/nph.17835.
doi: 10.1111/nph.17835
URL
|
[5] |
Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments[J]. Plant,Cell & Environment, 2019, 42(10):2931-2944.doi: 10.1111/pce.13633.
doi: 10.1111/pce.13633
|
[6] |
Wang J, Qin H, Zhou S R, Wei P C, Zhang H W, Zhou Y, Miao Y C, Huang R F. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice[J]. The Plant Cell, 2020, 32(2):414-428.doi: 10.1105/tpc.19.00593.
doi: 10.1105/tpc.19.00593
pmid: 31826965
|
[7] |
Ma X Y, Zhang C, Kim D Y, Huang Y Y, Chatt E, He P, Vierstra R D, Shan L B. Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity[J]. Plant Physiology, 2021, 185(4):1943-1965.doi: 10.1093/plphys/kiab011.
doi: 10.1093/plphys/kiab011
pmid: 33793954
|
[8] |
Kats I, Khmelinskii A, Kschonsak M, Huber F, Knieβ R A, Bartosik A, Knop M. Mapping degradation signals and pathways in a eukaryotic N-terminome[J]. Molecular Cell, 2018, 70(3):488-501.doi: 10.1016/j.molcel.2018.03.033.
doi: S1097-2765(18)30236-3
pmid: 29727619
|
[9] |
Timms R T, Zhang Z Q, Rhee D Y, Harper J W, Koren I, Elledge S J. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation[J]. Science, 2019, 365(6448):eaaw4912.doi: 10.1126/science.aaw4912.
doi: 10.1126/science.aaw4912
URL
|
[10] |
Deng F Y, Guo T W, Lefebvre M, Scaglione S, Antico C J, Jing T, Yang X, Shan W X, Ramonell K M. Expression and regulation of ATL9,an E3 ubiquitin ligase involved in plant defense[J]. PLoS One, 2017, 12(11):e0188458.doi: 10.1371/journal.pone.0188458.
doi: 10.1371/journal.pone.0188458
URL
|
[11] |
Li W, Zhong S H, Li G J, Li Q, Mao B Z, Deng Y W, Zhang H J, Zeng L J, Song F M, He Z H. Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence[J]. Cell Research, 2011, 21(5):835-848.doi: 10.1038/cr.2011.4.
doi: 10.1038/cr.2011.4
|
[12] |
Han P L, Dong Y H, Gu K D, Yu J Q, Hu D G, Hao Y J. The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea[J]. Planta, 2019, 249(4):1177-1188.doi: 10.1007/s00425-018-03069-z.
doi: 10.1007/s00425-018-03069-z
|
[13] |
李晓辉. 黄瓜泛素E3连接酶基因的克隆及表达分析[D]. 郑州: 河南农业大学, 2014.
|
|
Li X H. Cloning and expression analysis of E3Ubiquitin ligases in Cucumis sativus L.[D]. Zhengzhou: Henan Agricultural University, 2014.
|
[14] |
Gibbs D J, Bailey M, Tedds H M, Holdsworth M J. From start to finish:amino-terminal protein modifications as degradation signals in plants[J]. The New Phytologist, 2016, 211(4):1188-1194.doi: 10.1111/nph.14105.
doi: 10.1111/nph.14105
URL
|
[15] |
Holdsworth M J, Vicente J, Sharma G, Abbas M, Zubrycka A. The plant N-degron pathways of ubiquitin-mediated proteolysis[J]. Journal of Integrative Plant Biology, 2020, 62(1):70-89.doi: 10.1111/jipb.12882.
doi: 10.1111/jipb.12882
|
[16] |
Stary S, Yin X J, Potuschak T, Schlögelhofer P, Nizhynska V, Bachmair A. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues[J]. Plant Physiology, 2003, 133(3):1360-1366.doi: 10.1104/pp.103.029272.
doi: 10.1104/pp.103.029272
URL
|
[17] |
Dong H, Dumenil J, Lu F H, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y H, Bevan M W. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis[J]. Genes & Development, 2017, 31(2):197-208.doi: 10.1101/gad.292235.116.
doi: 10.1101/gad.292235.116
URL
|
[18] |
Chen I H, Chang J E, Wu C Y, Huang Y P, Hsu Y H, Tsai C H. An E3 ubiquitin ligase from Nicotiana benthamiana targets the replicase of Bamboo mosaic virus and restricts its replication[J]. Molecular Plant Pathology, 2019, 20(5):673-684.doi: 10.1111/mpp.12784.
doi: 10.1111/mpp.12784
pmid: 30924604
|
[19] |
doi: 10.15886/j.cnki.rdswxb.2014.02.011
|
|
Zhang Y Y, Huang N, Xiao X H, Huang L, Su W H, Xu L P, Que Y X. Cloning and expression analysis of full cDNA of B12D gene in sugarcane[J]. Journal of Tropical Biology, 2014, 5(2):111-119.
|
[20] |
Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative rt-PCR[J]. PLoS One, 2014, 9(5):e97469.doi: 10.1371/journal.pone.0097469.
doi: 10.1371/journal.pone.0097469
URL
|
[21] |
Que Y X, Xu L P, Wu Q B, Liu Y F, Ling H, Liu Y H, Zhang Y Y, Guo J L, Su Y C, Chen J B, Wang S S, Zhang C G. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut[J]. BMC Genomics, 2014, 15(1):996.doi: 10.1186/1471-2164-15-996.
doi: 10.1186/1471-2164-15-996
URL
|
[22] |
Zhang J S, Zhang X T, Tang H B, Zhang Q, Hua X T, Ma X K, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C F, Shi Y, Chen S, Xu X M, Yue J J, Nelson D R, Huang L X, Li Z, Xu H M, Zhou D, Wang Y J, Hu W C, Lin J S, Deng Y J, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L M, Yu L, Xin Y H, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W P, Ma Y H. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.[J]. Nature Genetics, 2018, 50(11):1565-1573.doi: 10.1038/s41588-018-0237-2.
doi: 10.1038/s41588-018-0237-2
|
[23] |
Yang Y Y, Gao S W, Su Y C, Lin Z L, Guo J L, Li M J, Wang Z T, Que Y X, Xu L P. Transcripts and low nitrogen tolerance:Regulatory and metabolic pathways in sugarcane under low nitrogen stress[J]. Environmental and Experimental Botany, 2019, 163:97-111.doi: 10.1016/j.envexpbot.2019.04.010.
doi: 10.1016/j.envexpbot.2019.04.010
URL
|
[24] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
doi: 10.1016/j.molp.2020.06.009
URL
|
[25] |
Letunic I, Khedkar S, Bork P. SMART:Recent updates,new developments and status in 2020[J]. Nucleic Acids Research, 2021, 49(D1):D458-D460.doi: 10.1093/nar/gkaa937.
doi: 10.1093/nar/gkaa937
pmid: 33104802
|
[26] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, van de Peer Y, Rouz P, Rombauts S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327.doi: 10.1093/nar/30.1.325.
doi: 10.1093/nar/30.1.325
URL
|
[27] |
Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server[J]. Methods in Moleular Biology, 1999, 112:531-552.doi: 10.1385/1-59259-584-7:531.
doi: 10.1385/1-59259-584-7:531
|
[28] |
Sapay N, Guermeur Y, Deléage G. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier[J]. BMC Bioinformatics, 2006, 7:255.doi: 10.1186/1471-2105-7-255.
doi: 10.1186/1471-2105-7-255
pmid: 16704727
|
[29] |
Zhou X G, Li Y, Zhang C X, Zheng W, Zhang G J, Zhang Y. Progressive and accurate assembly of multi-domain protein structures from cryo-EM density maps[J]. Nat Complct Sci, 2022, 2(4):265-275.doi: 10.1038/s43588-022-00232-1.
doi: 10.1038/s43588-022-00232-1
|
[30] |
Nielsen H, Tsirigos K D, Brunak S, von Heijne G. A brief history of protein sorting prediction[J]. The Protein Journal, 2019, 38(3):200-216.doi: 10.1007/s10930-019-09838-3.
doi: 10.1007/s10930-019-09838-3
|
[31] |
Nair R, Carter P, Rost B. NLSdb:Database of nuclear localization signals[J]. Nucleic Acids Research, 2003, 31(1):397-399.doi: 10.1093/nar/gkg001.
doi: 10.1093/nar/gkg001
URL
|
[32] |
doi: 10.3724/SP.J.1006.2021.04128
|
|
Huang N, Hui Q L, Fang Z M, Li S S, Ling H, Que Y X, Yuan Z N. Identification,localization and expression analysis of beta-carotene isomerase gene family in sugarcane[J]. Acta Agronomica Sinica, 2021, 47(5):882-893.
doi: 10.3724/SP.J.1006.2021.04128
URL
|
[33] |
Huang N, Ling H, Liu F, Su Y C, Su W H, Mao H Y, Zhang X, Wang L, Chen R K, Que Y X. Identification and evaluation of PCR reference genes for host and pathogen in sugarcane- Sporisorium scitamineum interaction system[J]. BMC Genomics, 2018, 19(1):479.doi: 10.1186/s12864-018-4854-z.
doi: 10.1186/s12864-018-4854-z
pmid: 29914370
|
[34] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[35] |
doi: 10.3724/SP.J.1006.2020.94171
|
|
Zheng Q L, Yu C J, Yao K C, Huang N, Que Y X, Ling H, Xu L P. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC[J]. Acta Agronomica Sinica, 2020, 46(6):844-857.
doi: 10.3724/SP.J.1006.2020.94171
URL
|
[36] |
Rocafort M, Fudal I, Mesarich C H. Apoplastic effector proteins of plant-associated fungi and oomycetes[J]. Current Opinion in Plant Biology, 2020, 56:9-19.doi: 10.1016/j.pbi.2020.02.004.
doi: S1369-5266(20)30022-4
pmid: 32247857
|
[37] |
Marchler-Bauer A, Lu S N, Anderson J B, Chitsaz F, Derbyshire M K, Deweese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Jackson J D, Ke Z X, Lanczycki C J, Lu F, Marchler G H, Mullokandov M, Omelchenko M V, Robertson C L, Song J S, Thanki N, Yamashita R A, Zhang D C, Zhang N G, Zheng C J, Bryant S H. CDD:A Conserved Domain Database for the functional annotation of proteins[J]. Nucleic Acids Research, 2010, 39(S1):D225-D229.doi: 10.1093/nar/gkq1189.
doi: 10.1093/nar/gkq1189
URL
|
[38] |
Berezuk A M, Glavota S, Roach E J, Goodyear M C, Krieger J R, Khursigara C M. Outer membrane lipoprotein RlpA is a novel periplasmic interaction partner of the cell division protein FtsK in Escherichia coli[J]. Scientific Reports, 2018, 8(1):12933.doi: 10.1038/s41598-018-30979-5.
doi: 10.1038/s41598-018-30979-5
pmid: 30154462
|
[39] |
Jorgenson M A, Chen Y, Yahashiri A, Popham D L, Weiss D S. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa[J]. Molecular Microbiology, 2014, 93(1):113-128.doi: 10.1111/mmi.12643.
doi: 10.1111/mmi.12643
pmid: 24806796
|
[40] |
Turek I, Wheeler J, Bartels S, Szczurek J, Wang Y H, Taylor P, Gehring C, Irving H. A natriuretic peptide from Arabidopsis thaliana (AtPNP-A)can modulate catalase 2 activity[J]. Scientific Reports, 2020, 10(1):19632.doi: 10.1038/s41598-020-76676-0.
doi: 10.1038/s41598-020-76676-0
|
[41] |
Han X W, Altegoer F, Steinchen W, Binnebesel L, Schuhmacher J, Glatter T, Giammarinaro P I, Djamei A, Rensing S A, Reissmann S, Kahmann R, Bange G. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor[J]. Nature, 2019, 565(7741):650-653.doi: 10.1038/s41586-018-0857-9.
doi: 10.1038/s41586-018-0857-9
|
[42] |
Zylka M J, Sowa N A, Taylor-Blake B, Twomey M A, Herrala A, Voikar V, Vihko P. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine[J]. Neuron, 2008, 60(1):111-122.doi: 10.1016/j.neuron.2008.08.024.
doi: 10.1016/j.neuron.2008.08.024
pmid: 18940592
|
[43] |
Labourel A, Frandsen K E H, Zhang F, Brouilly N, Grisel S, Haon M, Ciano L, Ropartz D, Fanuel M, Martin F, Navarro D, Rosso M N, Tandrup T, Bissaro B, Johansen K S, Zerva A, Walton P H, Henrissat B, Leggio L L, Berrin J G. A fungal family of lytic polysaccharide monooxygenase-like copper proteins[J]. Nature Chemical Biology, 2020, 16(3):345-350.doi: 10.1038/s41589-019-0438-8.
doi: 10.1038/s41589-019-0438-8
pmid: 31932718
|
[44] |
doi: 10.14088/j.cnki.issn0439-8114.2018.06.001
|
|
Tian L, Bao M Z, Zhang W. Research progress on stress-related RING finger proteins in plants[J]. Hubei Agricultural Sciences, 2018, 57(6):5-11,19.
|
[45] |
Chen M J, Ni M. Red and far-red insensitive 2,a ring-domain zinc finger protein,mediates phytochrome-controlled seedling deetiolation responses[J]. Plant Physiology, 2006, 140(2):457-465.doi: 10.1104/pp.105.073163.
doi: 10.1104/pp.105.073163
URL
|
[46] |
Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN,a putative cold inducible zinc finger protein,increased tolerance to chilling,salt and drought,and enhanced proline level in rice[J]. Planta, 2007, 226(4):1007-1016.doi: 10.1007/s00425-007-0548-5.
doi: 10.1007/s00425-007-0548-5
URL
|
[47] |
Xia Z L, Liu Q J, Wu J Y, Ding J Q. ZmRFP1,the putative ortholog of SDIR1,encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize[J]. Gene, 2012, 495(2):146-153.doi: 10.1016/j.gene.2011.12.028.
doi: 10.1016/j.gene.2011.12.028
URL
|
[48] |
Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP 6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. The Plant Cell, 2012, 24(11):4748-4762.doi: 10.1105/tpc.112.105429.
doi: 10.1105/tpc.112.105429
URL
|
[49] |
Ma A F, Zhang D P, Wang G X, Wang K, Li Z, Gao Y H, Li H C, Bian C, Cheng J K, Han Y N, Yang S H, Gong Z Z, Qi J S. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance[J]. The Plant Cell, 2021, 33(12):3675-3699.doi: 10.1093/plcell/koab221.
doi: 10.1093/plcell/koab221
URL
|
[50] |
孙伟娜, 徐菁, 殷丽华, 徐晓丹, 柯希望, 左豫虎. 小豆EG45基因的亚细胞定位及其在抗病中的功能分析[M]// 彭友良,王文明,陈雪伟. 中国植物病理学会2019年学术年会论文集. 北京: 中国农业科技出版社, 2019:465.doi: 10.26914/c.cnkihy.2019.020468.
doi: 10.26914/c.cnkihy.2019.020468
|
|
Sun W N, Xu Q, Yin L H, Xu X D, Ke X W, Zuo Y H. Subcellular localization and functional analysis of Adzuki bean EG 45 gene in disease resistance[M]// Peng Y L,Wang W M,Chen X W. Proceedings of the annual meeting of chinese society for plant pathology. Beijing: China Science and Technology Press, 2019:465.
|
[51] |
Bange G, Altegoer F. Plants strike back:Kiwellin proteins as a modular toolbox for plant defense mechanisms[J]. Communicative & Integrative Biology, 2019, 12(1):31-33.doi: 10.1080/19420889.2019.1586049.
doi: 10.1080/19420889.2019.1586049
|