[1] |
Ye M W, Peng Z, Tang D, Yang Z M, Li D W, Xu Y M, Zhang C Z, Huang S W. Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nature Plants, 2018, 4(9): 651-654.doi: 10.1038/s41477-018-0218-6.
doi: 10.1038/s41477-018-0218-6
pmid: 30104651
|
[2] |
doi: 10.19590/j.cnki.1008-1038.2019.08.015
|
|
Li Y J, Geng W, Shi C, Xu S L. Current situation and development countermeasures of potato germplasm resources[J]. China Fruit & Vegetable, 2019, 39(8): 61-63,67.
|
[3] |
Nettancourt D D. Incompatibility and incongruity in wild and cultivated plants[M]. Germany: Springer Berlin Heidelberg, 2001:1-24.doi: 10.1007/978-3-662-04502-2.
doi: 10.1007/978-3-662-04502-2
|
[4] |
doi: 10.3321/j.issn:1000-2030.2006.04.025
|
|
Wu H Q, Zhang S L, Li X, Wu J. Advance in molecular biology of self-incompatibility in flowering plants[J]. Journal of Nanjing Agricultural University, 2006, 29(4): 119-126.
|
[5] |
doi: 10.1146/annurev.arplant.56.032604.144249
pmid: 15862104
|
[6] |
Clarke A E, Newbigin E. Molecular aspects of self-incompatibility in flowering plants[J]. Annual Review of Genetics, 1993, 27: 257-279.doi: 10.1146/annurev.ge.27.120193.001353.
doi: 10.1146/annurev.ge.27.120193.001353
pmid: 8122904
|
[7] |
Lee H S, Huang S, Kao T H. S proteins control rejection of incompatible pollen in Petunia inflata[J]. Nature, 1994, 367(6463): 560-563.doi: 10.1038/367560a0.
doi: 10.1038/367560a0
URL
|
[8] |
Luu D T, Qin X K, Morse D, Cappadocia M. S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility[J]. Nature, 2000, 407(6804): 649-651.doi: 10.1038/35036623.
doi: 10.1038/35036623
URL
|
[9] |
Goldraij A, Kondo K, Lee C B, Hancock C N, Sivaguru M, Vazquez-Santana S, Kim S, Phillips T E, Cruz-Garcia F, McClure B. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana[J]. Nature, 2006, 439(7078): 805-810.doi: 10.1038/nature04491.
doi: 10.1038/nature04491
URL
|
[10] |
Franklin-Tong V E, Franklin F C H. The different mechanisms of gametophytic self-incompatibility[J]. Philosophical Transactions of the Royal Society of London Series B(Biological Sciences), 2003, 358(1434): 1025-1032.doi: 10.1098/rstb.2003.1287.
doi: 10.1098/rstb.2003.1287
URL
|
[11] |
Murfett J, Strabala T J, Zurek D M, Mou B, Beecher B, McClure B A. S RNase and interspecific pollen rejection in the genus Nicotiana: Multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species[J]. The Plant Cell, 1996, 8(6): 943-958.doi: 10.1105/tpc.8.6.943.
doi: 10.1105/tpc.8.6.943
pmid: 12239407
|
[12] |
Xu X, Pan S K, Cheng S F, Zhang B, Mu D S, Ni P X, et al. Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355): 189-195.doi: 10.1038/nature10158.
doi: 10.1038/nature10158
URL
|
[13] |
Kondo K, Yamamoto M, Matton D P, Sato T, Hirai M, Norioka S, Hattori T, Kowyama Y. Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self-incompatibility[J]. The Plant Journal: for Cell and Molecular Biology, 2002, 29(5): 627-636.doi: 10.1046/j.0960-7412.2001.01245.x.
doi: 10.1046/j.0960-7412.2001.01245.x
URL
|
[14] |
doi: 10.13925/j.cnki.gsxb.2012.04.016
|
|
Jiang X, Cao X Y, Wang D J, Feng J R, Liu Y X, Fan X M. Identification of self-incompatibility S-RNase genotypes for apricot cultivars in South of Xinjiang area[J]. Journal of Fruit Science, 2012, 29(4): 569-576.
|
[15] |
doi: 10.16213/j.cnki.scjas.2018.11.008
|
|
Dai G L, Zhang Z P, Cheng H, Zhang B, Jiao E N, Li Y L, Qin K. Identification of S-genotype of sixteen cultivars and sequence analyses of S-RNase in Lycium L.[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(11): 2261-2267.
|
[16] |
Dzidzienyo D K, Bryan G J, Wilde G, Robbins T P. Allelic diversity of S-RNase alleles in diploid potato species[J]. Theoretical and Applied Genetics, 2016, 129(10): 1985-2001.doi: 10.1007/s00122-016-2754-7.
doi: 10.1007/s00122-016-2754-7
pmid: 27497984
|
[17] |
doi: 10.11913/PSJ.2095-0837.2021.20172
|
|
Li X L, Geng T T, Wang Y, Qian T, Zhang Y J, Zhao F, Sun K, Zhang H. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N.Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182.
|
[18] |
Eggers E J, van der Burgt A, van Heusden S A W, de Vries M E, Visser R G F, Bachem C W B, Lindhout P. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato[J]. Nature Communications, 2021, 12: 4141.doi: 10.1038/s41467-021-24267-6.
doi: 10.1038/s41467-021-24267-6
URL
|
[19] |
Ma L, Zhang C Z, Zhang B, Tang F, Li F T, Liao Q G, Tang D, Peng Z, Jia Y X, Gao M, Guo H, Zhang J Z, Luo X M, Yang H Q, Gao D L, Lucas W J, Li C H, Huang S W, Shang Y. A non S-locus F-box gene breaks self-incompatibility in diploid potatoes[J]. Nature Communications, 2021, 12: 4142.doi: 10.1038/s41467-021-24266-7.
doi: 10.1038/s41467-021-24266-7
URL
|
[20] |
Sims T L, Ordanic M. Identification of a S-ribonuclease-binding protein in Petunia hybrida[J]. Plant Molecular Biology, 2001, 47(6): 771-783.doi: 10.1023/a:1013639528858.
doi: 10.1023/a:1013639528858
pmid: 11785938
|
[21] |
Huang J, Zhao L, Yang Q Y, Xue Y B. AhSSK1,a novel SKP1-like protein that interacts with the S-locus F-box protein SLF[J]. The Plant Journal, 2006, 46(5): 780-793.doi: 10.1111/j.1365-313X.2006.02735.x.
doi: 10.1111/j.1365-313X.2006.02735.x
URL
|
[22] |
Hua Z H, Kao T H. Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility[J]. The Plant Cell, 2006, 18(10): 2531-2553.doi: 10.1105/tpc.106.041061.
doi: 10.1105/tpc.106.041061
URL
|
[23] |
Hua Z H, Fields A, Kao T H. Biochemical models for S-RNase-based self-incompatibility[J]. Molecular Plant, 2008, 1(4): 575-585.doi: 10.1093/mp/ssn032.
doi: 10.1093/mp/ssn032
URL
|
[24] |
O'Brien M, Major G, Chantha S C, Matton D P. Isolation of S-RNase binding proteins from Solanum chacoense: Identification of an SBP1(RING finger protein)orthologue[J]. Sexual Plant Reproduction, 2004, 17(2): 81-87.doi: 10.1007/s00497-004-0218-8.
doi: 10.1007/s00497-004-0218-8
URL
|
[25] |
Lee C B, Swatek K N, McClure B. Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins[J]. Journal of Biological Chemistry, 2008, 283(40): 26965-26973.doi: 10.1074/jbc.M804410200.
doi: 10.1074/jbc.M804410200
URL
|
[26] |
Minamikawa M F, Koyano R, Kikuchi S, Koba T, Sassa H. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple( Malus× domestica)[J]. PLoS One, 2014, 9(5): e97642.doi: 10.1371/journal.pone.0097642.
doi: 10.1371/journal.pone.0097642
URL
|
[27] |
Zeng B, Wang J Y, Hao Q, Yu Z F, Abudukayoumu A, Tang Y L, Zhang X F, Ma X X. Identification of a novel SBP1-containing SCFSFB complex in wild dwarf almond( Prunus tenella)[J]. Frontiers in Genetics, 2019, 10: 1019.doi: 10.3389/fgene.2019.01019.
doi: 10.3389/fgene.2019.01019
pmid: 31708966
|
[28] |
Yuan H, Meng D, Gu Z Y, Li W, Wang A D, Yang Q, Zhu Y D, Li T Z. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple[J]. Journal of Experimental Botany, 2014, 65(12):3121-3131. doi: 10.1093/jxb/eru164.
doi: 10.1093/jxb/eru164
pmid: 24759884
|
[29] |
Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology, 2014, 14: 327.doi: 10.1186/s12870-014-0327-y.
doi: 10.1186/s12870-014-0327-y
URL
|
[30] |
doi: 10.13592/j.cnki.ppj.2017.0088
|
|
Yu M S, Li X, Gao M Y, Yang L, Ni D A, Wang Y X. Establishment of CRISPR/Cas9-meidiated genome editing system in lettuce(Lactuca sativa L.)[J]. Plant Physiology Journal, 2017, 53(4): 736-746.
|
[31] |
Enciso-Rodriguez F, Manrique-Carpintero N C, Nadakuduti S S, Buell C R, Zarka D, Douches D. Overcoming self-incompatibility in diploid potato using CRISPR-Cas9[J]. Frontiers in Plant Science, 2019, 10: 376.doi: 10.3389/fpls.2019.00376.
doi: 10.3389/fpls.2019.00376
pmid: 31001300
|
[32] |
李颖, 李广存, 李灿辉, 屈冬玉, 黄三文. 二倍体杂种优势马铃薯育种的展望[J]. 中国马铃薯, 2013, 27(2): 96-99.
|
|
Li Y, Li G C, Li C H, Qu D Y, Huang S W. Prospects of diploid hybrid breeding in potato[J]. Chinese Potato Journal, 2013, 27(2): 96-99.
|
[33] |
张春芝. 二倍体马铃薯自交不亲和与自交衰退研究[D]. 北京: 中国农业科学院, 2018.
|
|
Zhang C Z. Studies of self-incompatibility and inbreeding depression in diploid potato[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
|
[34] |
doi: 10.7699/j.ynnu.ns-2019-081
|
|
Li F T, Tang F, Gao D L, Duan S F, Li Y H, Li C H, Ma L. Research progress on gametophytic self-incompatibility[J]. Journal of Yunan Normal University (Natural Sciences Edition), 2019, 39(6): 65-70.
|
[35] |
doi: 10.13271/j.mpb.017.005285
|
|
Yu Z P, Ma X X, Zeng B, Wang J Y, Aabudoukayoumu A. Research progress on SBP1 gene of plant gametophytic self-incompatibility[J]. Molecular Plant Breeding, 2019, 17(16): 5285-5290.
|
[36] |
Marcellán O N, Acevedo A, Camadro E L. S16,a novel S-RNase allele in the diploid species Solanum chacoense[J]. Genome, 2006, 49(8): 1052-1054.doi: 10.1139/g06-058.
doi: 10.1139/g06-058
pmid: 17036081
|
[37] |
Yang X M, Li H, Yu H W, Chai L J, Xu Q, Deng X X. Molecular phylogeography and population evolution analysis of Citrus ichangensis(Rutaceae)[J]. Tree Genetics & Genomes, 2017, 13(1): 1-16.doi: 10.1007/s11295-017-1113-4.
doi: 10.1007/s11295-017-1113-4
|
[38] |
doi: 10.7671/j.issn.1001-411X.201905058
|
|
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas genome editing technologies in plants[J]. Journal of South China Agricultural University, 2019, 40(5): 38-49.
|
[39] |
Deb S, Choudhury A, Kharbyngar B, Satyawada R R. Applications of CRISPR/Cas9 technology for modification of the plant genome[J]. Genetica, 2022, 150(1): 1-12.doi: 10.1007/s10709-021-00146-2.
doi: 10.1007/s10709-021-00146-2
pmid: 35018532
|
[40] |
Impens L, Jacobs T B, Nelissen H, Inz D, Pauwels L. Mini-review: Transgenerational CRISPR/Cas9 gene editing in plants[J]. Frontiers in Genome Editing, 2022, 4: 825042.doi: 10.3389/fgeed.2022.825042.
doi: 10.3389/fgeed.2022.825042
URL
|
[41] |
韩政宏, 段宇轩, 徐善斌, 王敬国, 刘化龙, 杨洛淼, 贾琰, 辛威, 郑洪亮, 邹德堂. 利用CRISPR/Cas9技术敲除 GS3和 GS9基因改良水稻粒型性状[J]. 华北农学报, 2022, 37(2): 9-17. doi: 10.7668/hbnxb.20192762.
doi: 10.7668/hbnxb.20192762
|
|
Han Z H, Duan Y X, Xu S B, Wang J G, Liu H L, Yang L M, Jia Y, Xin W, Zheng H L, Zou D T. Improvement of grain dhape in rice by knocking GS3 and GS9 via CRISPR/Cas9 system[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 9-17.
|
[42] |
Sun L H, Kao T H. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata[J]. Plant Reproduction, 2018, 31(2): 129-143.doi: 10.1007/s00497-017-0314-1.
doi: 10.1007/s00497-017-0314-1
URL
|
[43] |
Ma C F, Zhu C Z, Zheng M, Liu M C, Zhang D J, Liu B L, Li Q F, Si J, Ren X S, Song H Y. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system[J]. Horticulture Research, 2019, 6: 20.doi: 10.1038/s41438-018-0107-1.
doi: 10.1038/s41438-018-0107-1
URL
|
[44] |
Dou S W, Zhang T, Tu J X, Shen J X, Yi B, Wen J, Fu T D, Dai C, Ma C Z. Generation of novel self-incompatible Brassica napus by CRISPR/Cas9[J]. Plant Biotechnology Journal, 2021, 19(5): 875-877.doi: 10.1111/pbi.13577.
doi: 10.1111/pbi.13577
URL
|