[1] |
doi: 10.16178/j.issn.0528-9017.20190503
|
|
Bao C L, Wang J L, Hu T H, Hu H J, Wang W H, Wei Q Z. Current situation and breeding direction of radish industry development[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(5): 707-710.
|
[2] |
Gao S P, Chu C C. Gibberellin metabolism and signaling: Targets for improving agronomic performance of crops[J]. Plant and Cell Physiology, 2020, 61(11): 1902-1911.doi: 10.1093/pcp/pcaa104.
doi: 10.1093/pcp/pcaa104
pmid: 32761079
|
[3] |
Olszewski N, Sun T P, Gubler F. Gibberellin signaling: Biosynthesis,catabolism,and response pathways[J]. The Plant Cell, 2002, 14(S1): S61-S80.doi: 10.1105/tpc.010476.
doi: 10.1105/tpc.010476
URL
|
[4] |
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice[J]. Plant Physiology, 2004, 134(4): 1642-1653.doi: 10.1104/pp.103.033696.
doi: 10.1104/pp.103.033696
pmid: 15075394
|
[5] |
Hedden P. The current status of research on gibberellin biosynthesis[J]. Plant and Cell Physiology, 2020, 61(11): 1832-1849.doi: 10.1093/pcp/pcaa092.
doi: 10.1093/pcp/pcaa092
pmid: 32652020
|
[6] |
Zhao H J, Dong J L, Wang T. Function and expression analysis of gibberellin oxidases in apple[J]. Plant Molecular Biology Reporter, 2010, 28(2): 231-238.doi: 10.1007/s11105-009-0146-8.
doi: 10.1007/s11105-009-0146-8
URL
|
[7] |
Fleet C M, Sun T P. A DELLAcate balance: The role of gibberellin in plant morphogenesis[J]. Current Opinion in Plant Biology, 2005, 8(1): 77-85.doi: 10.1016/j.pbi.2004.11.015.
doi: 10.1016/j.pbi.2004.11.015
pmid: 15653404
|
[8] |
Mitchum M G, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun T P. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development[J]. The Plant Journal, 2006, 45(5): 804-818.doi: 10.1111/j.1365-313X.2005.02642.x.
doi: 10.1111/j.1365-313X.2005.02642.x
URL
|
[9] |
Wuddineh W A, Mazarei M, Zhang J Y, Poovaiah C R, Mann D G J, Ziebell A, Sykes R W, Davis M F, Udvardi M K, Stewart C N. Identification and overexpression of gibberellin 2-oxidase(GA2ox)in switchgrass( Panicum virgatum L.)for improved plant architecture and reduced biomass recalcitrance[J]. Plant Biotechnology Journal, 2015, 13(5): 636-647.doi: 10.1111/pbi.12287.
doi: 10.1111/pbi.12287
pmid: 25400275
|
[10] |
Schomburg F M, Bizzell C M, Lee D J, Zeevaart J A D, Amasino R M. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants[J]. The Plant Cell, 2003, 15(1): 151-163.doi: 10.1105/tpc.005975.
doi: 10.1105/tpc.005975
URL
|
[11] |
Giacomelli L, Rota-Stabelli O, Masuero D, Acheampong A K, Moretto M, Caputi L, Vrhovsek U, Moser C. Gibberellin metabolism in Vitis vinifera L.during bloom and fruit-set: Functional characterization and evolution of grapevine gibberellin oxidases[J]. Journal of Experimental Botany, 2013, 64(14): 4403-4419.doi: 10.1093/jxb/ert251.
doi: 10.1093/jxb/ert251
pmid: 24006417
|
[12] |
Yamaguchi S. Gibberellin biosynthesis in Arabidopsis[J]. Phytochemistry Reviews, 2006, 5(1): 39-47.doi: 10.1007/s11101-005-4248-0.
doi: 10.1007/s11101-005-4248-0
URL
|
[13] |
Han F M, Zhu B G. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis,and soybean[J]. Gene, 2011, 473(1): 23-35.doi: 10.1016/j.gene.2010.10.010.
doi: 10.1016/j.gene.2010.10.010
URL
|
[14] |
Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants?[J]. The Plant Journal, 2003, 35(1): 104-115.doi: 10.1046/j.1365-313x.2003.01780.x.
doi: 10.1046/j.1365-313x.2003.01780.x
URL
|
[15] |
doi: 10.1146/annurev.arplant.59.032607.092804
pmid: 18173378
|
[16] |
Davière J M, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6): 1147-1151.doi: 10.1242/dev.087650.
doi: 10.1242/dev.087650
URL
|
[17] |
Sun T P. Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development[J]. Plant Physiology, 2010, 154(2): 567-570.doi: 10.1104/pp.110.161554.
doi: 10.1104/pp.110.161554
URL
|
[18] |
Lawit S J, Wych H M, Xu D P, Kundu S M, Tomes D T. Maize DELLA Proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant and Cell Physiology, 2010, 51(11): 1854-1868.doi: 10.1093/pcp/pcq153.
doi: 10.1093/pcp/pcq153
pmid: 20937610
|
[19] |
Ogawa M, Kusano T, Katsumi M, Sano H. Rice gibberellin-insensitive gene homolog,OsGAI,encodes a nuclear-localized protein capable of gene activation at transcriptional level[J]. Gene, 2000, 245(1): 21-29.doi: 10.1016/s0378-1119(00)00018-4.
doi: 10.1016/s0378-1119(00)00018-4
pmid: 10713441
|
[20] |
Chandler P M, Marion-Poll A, Ellis M, Gubler F. Mutants at the Slender1 locus of barley cv Himalaya.molecular and physiological characterization[J]. Plant Physiology, 2002, 129(1): 181-190.doi: 10.1104/pp.010917.
doi: 10.1104/pp.010917
pmid: 12011349
|
[21] |
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J]. The Plant Cell, 2001, 13(5): 999-1010.doi: 10.1105/tpc.13.5.999.
doi: 10.1105/tpc.13.5.999
URL
|
[22] |
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741): 256-261.doi: 10.1038/22307.
doi: 10.1038/22307
URL
|
[23] |
Silverstone A L, Ciampaglio C N, Sun T P. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. The Plant Cell, 1998, 10(2): 155-169.doi: 10.1105/tpc.10.2.155.
doi: 10.1105/tpc.10.2.155
URL
|
[24] |
Lee S, Cheng H, King K E, Wang W, He Y W, Hussain A, Lo J, Harberd N P, Peng J R. Gibberellin regulates Arabidopsis seed germination via RGL2,a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes & Development, 2002, 16(5): 646-658.doi: 10.1101/gad.969002.
doi: 10.1101/gad.969002
URL
|
[25] |
Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1997, 11(23): 3194-3205.doi: 10.1101/gad.11.23.3194.
doi: 10.1101/gad.11.23.3194
URL
|
[26] |
Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y, Sun T P. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis[J]. The Plant Cell, 2001, 13(7): 1555-1566.doi: 10.1105/tpc.010047.
doi: 10.1105/tpc.010047
|
[27] |
Tyler L, Thomas S G, Hu J H, Dill A, Alonso J M, Ecker J R, Sun T P. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant Physiology, 2004, 135(2): 1008-1019.doi: 10.1104/pp.104.039578.
doi: 10.1104/pp.104.039578
URL
|
[28] |
Wen C K, Chang C R. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J]. The Plant Cell, 2002, 14(1): 87-100.doi: 10.1105/tpc.010325.
doi: 10.1105/tpc.010325
URL
|
[29] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I C, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059): 693-698.doi: 10.1038/nature04028.
doi: 10.1038/nature04028
URL
|
[30] |
Murase K, Hirano Y, Sun T P, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456: 459-463.doi: 10.1038/nature07519.
doi: 10.1038/nature07519
URL
|
[31] |
Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M. Structural basis for gibberellin recognition by its receptor GID1[J]. Nature, 2008, 456(7221): 520-523.doi: 10.1038/nature07546.
doi: 10.1038/nature07546
URL
|
[32] |
Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell, 2006, 18(12): 3399-3414.doi: 10.1105/tpc.106.047415.
doi: 10.1105/tpc.106.047415
URL
|
[33] |
Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Xiang H Y, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor,GID1,with a rice DELLA protein,SLR1,and gibberellin[J]. The Plant Cell, 2007, 19(7): 2140-2155.doi: 10.1105/tpc.106.043729.
doi: 10.1105/tpc.106.043729
URL
|
[34] |
Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere[J]. Current Opinion in Plant Biology, 2006, 9(6): 631-638.doi: 10.1016/j.pbi.2006.09.003.
doi: 10.1016/j.pbi.2006.09.003
pmid: 17005440
|
[35] |
Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice[J]. The Plant Cell, 2010, 22(8): 2680-2696.doi: 10.1105/tpc.110.075549.
doi: 10.1105/tpc.110.075549
pmid: 20716699
|
[36] |
McGinnis K M, Thomas S G, Soule J D, Strader L C, Zale J M, Sun T P, Steber C M. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. The Plant Cell, 2003, 15(5): 1120-1130.doi: 10.1105/tpc.010827.
doi: 10.1105/tpc.010827
URL
|
[37] |
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant[J]. Science, 2003, 299(5614): 1896-1898.doi: 10.1126/science.1081077.
doi: 10.1126/science.1081077
pmid: 12649483
|
[38] |
Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Yu S W, Sasaki T. The radish genome and comprehensive gene expression profile of tuberous root formation and development[J]. Scientific Reports, 2015, 5: 10835.doi: 10.1038/srep10835.
doi: 10.1038/srep10835
pmid: 26056784
|
[39] |
Zhang X H, Liu T J, Wang J L, Wang P, Qiu Y, Zhao W, Pang S, Li X M, Wang H P, Song J P, Zhang W L, Yang W L, Sun Y Y, Li X X. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated,wild,and weedy radishes[J]. Molecular Plant, 2021, 14(12): 2032-2055.doi: 10.1016/j.molp.2021.08.005.
doi: 10.1016/j.molp.2021.08.005
URL
|
[40] |
doi: 10.13560/j.cnki.biotech.bull.1985.2016.07.001
|
|
Wu J M, Chen R F, Huang X, Qiu L H, Li Y R. Studies on the gene of key component GA20-oxidase for gibberellin biosynthesis in plant[J]. Biotechnology Bulletin, 2016, 32(7): 1-12.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.07.001
|
[41] |
董凤, 樊胜, 马小龙, 孟媛, 左希亚, 刘小杰, 李珂, 刘桢, 韩明玉, 张东. 苹果赤霉素氧化酶基因GA2ox、GA3ox和GA20ox家族全基因组鉴定及表达分析[J]. 园艺学报, 2018, 45(4): 613-626.doi: 10.16420/j.issn.0513-353x.2017-0452.
doi: 10.16420/j.issn.0513-353x.2017-0452
|
|
Dong F, Fan S, Ma X L, Meng Y, Zuo X Y, Liu X J, Li K, Liu Z, Han M Y, Zhang D. Genome-wide identification and expression analysis of GA2ox,GA3ox and GA20ox in apple[J]. Acta Horticulturae Sinica, 2018, 45(4): 613-626.
|
[42] |
doi: 10.27025/d.cnki.ggsnu.2021.000091
|
|
He H H. Identification of GA2ox,GA3ox and GA20ox families of gibberellin oxidase genes and salt tolerance functional analysis of GA2ox7 in Vitis vinifera[D]. Lanzhou: Gansu Agricultural University, 2021.
|
[43] |
Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y. DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxidase 2[J]. Plant Physiology, 2017, 175(3): 1395-1406.doi: 10.1104/pp.17.00282.
doi: 10.1104/pp.17.00282
pmid: 28916594
|
[44] |
Appleford N E J, Evans D J, Lenton J R, Gaskin P, Croker S J, Devos K M, Phillips A L, Hedden P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J]. Planta, 2006, 223(3): 568-582.doi: 10.1007/s00425-005-0104-0.
doi: 10.1007/s00425-005-0104-0
pmid: 16160850
|
[45] |
doi: 10.7666/d.Y3101296
|
|
Li C J. Analysis on the differences of endogenous hormone contents in different parts of flower and young fruit of Korla fragrant pear[D]. Urumqi: Xinjiang Agricultural University, 2016.
|
[46] |
doi: 10.16420/j.issn.0513-353x.2016-0374
|
|
Ren X X, Wang S L, Xue J Q, Yang R W, Guan Y R, Li D D, Xue Y Q, Zhang X X. Expression analysis of GA and ABA signal transduction genes in Peaonia ostti Fengdan seeds under different temperature treatments[J]. Acta Horticulturae Sinica, 2017, 44(1): 80-88.
|
[47] |
Abelenda J A, Navarro C, Prat S. Flowering and tuberization: A tale of two nightshades[J]. Trends in Plant Science, 2014, 19(2): 115-122.doi: 10.1016/j.tplants.2013.09.010.
doi: 10.1016/j.tplants.2013.09.010
pmid: 24139978
|
[48] |
Wickland D P, Hanzawa Y. The flowering locus t/terminal flower 1 gene family: Functional evolution and molecular mechanisms[J]. Molecular Plant, 2015, 8(7): 983-997.doi: 10.1016/j.molp.2015.01.007.
doi: 10.1016/j.molp.2015.01.007
pmid: 25598141
|
[49] |
Qi H D, Lin Y, Ren Q P, Wang Y Y, Xiong F, Wang X L. RNA splicing of FLC modulates the transition to flowering[J]. Frontiers in Plant Science, 2019, 10: 1625.doi: 10.3389/fpls.2019.01625.
doi: 10.3389/fpls.2019.01625
URL
|
[50] |
Jin S, Nasim Z, Susila H, Ahn J H. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants[J]. Seminars in Cell & Developmental Biology, 2021, 109: 20-30.doi: 10.1016/j.semcdb.2020.05.007.
doi: 10.1016/j.semcdb.2020.05.007
|
[51] |
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression[J]. Nature, 2021, 599(7886): 657-661.doi: 10.1038/s41586-021-04062-5.
doi: 10.1038/s41586-021-04062-5
URL
|