[1] Shao H X, Jiang Y C, Yuan H S, Ji L F, Jin W J, Qian K, Ye J Q, Qin A J. Generation and molecular characteristics of a highly attenuated GPV strain through adaptation in GEF cells[J]. BMC Veterinary Research, 2020, 16(1):456.doi:10.1186/s12917-020-02673-0. [2] Shen H Q, Huang J F, Yan Z Q, Yin L J, Li Q H, Zhou Q F, Chen F. Isolation and characterization of a recombinant Muscovy duck parvovirus circulating in Muscovy ducks in South China[J]. Archives of Virology, 2020, 165(12):2931-2936.doi:10.1007/s00705-020-04829-7. [3] Zhang S, Yang J, Wang Z Z, Chen L, Diao Y X, Tang Y. Research Note:Development of an ELISA to distinguish between Goose parvovirus infection and vaccine immunization antibodies[J]. Poultry Science, 2020, 99(3):1332-1340.doi:10.1016/j.psj.2019.12.012. [4] 方定一. 小鹅瘟的介绍[J].中国畜牧兽医, 1962, 9(8):19-20. Fang D Y. The introduction of gosling plague[J]. Journal of China Animal Husbandry and Veterinary Medicine, 1962, 9(8):19-20. [5] Matczuk A K, Chmielewska-Władyka M, Siedlecka M, Bednarek K J, Wieliczko A. Short beak and dwarfism syndrome in ducks in Poland caused by Novel goose parvovirus[J]. Animals(Basel), 2020, 10(12):2397.doi:10.3390/ani10122397. [6] Kardoǧan Ö, Müştak H K, Müştak I·B. The first detection and characterization of Goose parvovirus(GPV) in Turkey[J]. Tropical Animal Health and Production, 2020, 53(1):36.doi:10.1007/s11250-020-02463-8. [7] Soliman M A, Erfan A M, Samy M, Mahana O, Nasef S A. Detection of Novel goose parvovirus disease associated with short beak and dwarfism syndrome in commercial ducks[J]. Animals(Basel), 2020, 10(10):1833.doi:10.3390/ani10101833. [8] Yan Y Q, He T Q, Li R, Zhang S Y, Wang K, Yi S S, Niu J T, Dong H, Hu G X. Molecular characterization and comparative pathogenicity of Goose parvovirus isolated from Jilin Province, northeast China[J]. Avian Diseases, 2019, 63(3):481-485.doi:10.1637/aviandiseases-d-19-00075. [9] Liu W J, Yang Y T, Zou H Y, Chen S J, Yang C, Tian Y B, Huang Y M. Identification of recombination in Novel goose parvovirus isolated from domesticated Jing-Xi partridge ducks in South China[J]. Virus Genes, 2020, 56(5):600-609.doi:10.1007/s11262-020-01781-1. [10] Li D L, Zhang L D, Chen S H, Gu J, Ding M J, Li J X. Detection and molecular characterization of two genotypes of Goose parvoviruses isolated from growing period geese and cherry valley ducks in China[J]. Avian Diseases, 2019, 63(3):411-419.doi:10.1637/12015-121818-Reg.1. [11] Wan C H, Liu R C, Chen C T, Cheng L F, Shi S H, Fu G H, Chen H M, Fu Q L, Huang Y. Novel goose parvovirus in domestic Linwu sheldrakes with short beak and dwarfism syndrome, China[J]. Transboundary and Emerging Diseases, 2019, 66(5):1834-1839.doi:10.1111/tbed.13280. [12] Bian G Z, Ma H B, Luo M P, Gong F P, Li B, Wang G P, Mohiuddin M, Liao M, Yuan J F. Identification and genomic analysis of two novel duck-origin GPV-related parvovirus in China[J]. BMC Veterinary Research, 2019, 15(1):88.doi:10.1186/s12917-019-1833-9. [13] Liu M M, Zhao Y, Hu D M, Huang X T, Xiong H F, Qi K Z, Liu H M. Clinical and histologic characterization of co-infection with Astrovirus and Goose parvovirus in goslings[J]. Avian Diseases, 2019, 63(4):731-736.doi:10.1637/aviandiseases-D-19-00110. [14] Liu H M, Hu D M, Zhu Y Q, Xiong H F, Lü X, Wei C Q, Liu M M, Yin D D, He C S, Qi K Z, Wang G J. Coinfection of Parvovirus and Astrovirus in gout-affected goslings[J]. Transboundary and Emerging Diseases, 2020, 67(6):2830-2838.doi:10.1111/tbed.13652. [15] Ting C H, Lin C Y, Huang Y C, Liu S S, Peng S Y, Wang C W, Wu H Y. Correlation between Goose circovirus and Goose parvovirus with gosling feather loss disease and goose broke feather disease in southern Taiwan[J]. Journal of Veterinary Science, 2021, 22(1):e1.doi:10.4142/jvs.2021.22.e1. [16] Liu J, Yang X X, Hao X J, Feng Y S, Zhang Y L, Cheng Z Q. Effect of Goose parvovirus and duck Circovirus coinfection in ducks[J]. Journal of Veterinary Research, 2020, 64(3):355-361.doi:10.2478/jvetres-2020-0048. [17] Yang Y P, Sui N N, Zhang R H, Lan J J, Li P F, Lian C Y, Li H Q, Xie Z J, Jiang S J. Coinfection of Novel goose parvovirus-associated virus and duck Circovirus in feather sacs of Cherry Valley ducks with feather shedding syndrome[J]. Poultry Science, 2020, 99(9):4227-4234.doi:10.1016/j.psj.2020.05.013. [18] 朱新产, 邵艳红, 朱峰伟, 杨丽金. 鹅细小病毒感染雏鹅的免疫球蛋白IgG/IgM变异性研究[J].华北农学报, 2015, 30(1):42-53.doi:10.7668/hbnxb.2015.01.008. Zhu X C, Shao Y H, Zhu F W, Yang L J. Study on the molecular variability of immunoglobulin IgG/IgM from goslings infected Goose parvovirus[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(1):42-53. [19] Goldberg B S, Ackerman M E. Antibody-mediated complement activation in pathology and protection[J]. Immunology and Cell Biology, 2020, 98(4):305-317.doi:10.1111/imcb.12324. [20] Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19[J]. Biomed Pharmacother, 2020, 129:110337.doi:10.1016/j.biopha.2020.110337. [21] 李鹏, 刘凤权, 杨慧, 赵丽, 李霞. 锌螯合物抗体可变区的克隆鉴定、真核表达及重组抗体的三维模建[J].生物技术通报, 2012(1):108-115.doi:10.13560/j.cnki.biotech.bull.1985.2012.01.016. Li P, Liu F Q, Yang H, Zhao L, Li X. Cloning, identification and eukaryotic expression of variable region of monoclonal antibodies against chelated zinc and three dimensional modeling of recombinant antibody[J]. Biotechnology Bulletin, 2012(1):108-115. [22] 王锐. 基于杂交瘤细胞单链抗体制备技术的应用-抗GPV-NS1和GoIFN-γ单链抗体的构建[D].哈尔滨:东北农业大学, 2009. Wang R. Application of single-chain antibody preparation technique based on hybridoma cell-construction of anti-GPV-NS1-ScFv and anti-Go IFN-γ-ScFv[D].Harbin:Northeast Agricultural University, 2009. [23] 管宝全, 张军, 罗文新, 陈敏, 吴婷, 程通, 夏宁邵. 乙型肝炎病毒pre-S1区中和抗体可变区的原核表达[J].生物工程学报, 2004, 20(6):901-905.doi:10.13345/j.cjb.2004.06.019. Guan B Q, Zhang J, Luo W X, Chen M, Wu T, Cheng T, Xia N S. Prokaryotic expression of variable domain of neutralizing antibody against hepatitis B virus pre-S1[J]. Chinese Journal of Biotechnology, 2004, 20(6):901-905. [24] Xiao H X, Guo T L, Yang M, Qi J X, Huang C B, Hong Y Y, Gu J J, Pang X F, Liu W J, Peng R C, McCauley J, Bi Y H, Li S H, Feng J X, Zhang H L, Zhang X P, Lu X S, Yan J H, Chen L L, Shi Y, Chen W Z, Gao G F. Light chain modulates heavy chain conformation to change protection profile of monoclonal antibodies against influenza A viruses[J]. Cell Discovery, 2019, 5:21.doi:10.1038/s41421-019-0086-x. [25] Davies J, Riechmann L. Antibody VH domains as small recognition units[J]. Nature Biotechnology, 1995, 13(5):475-479.doi:10.1038/nbt0595-475. [26] Ria n o-Umbarila L, Rojas-Trejo V M, Romero-Moreno J A, Costas M, Utrera-Espíndola I, Olamendi-Portugal T, Possani L D, Becerril B. Comparative assessment of the VH-VL and VL-VH orientations of single-chain variable fragments of scorpion toxin-neutralizing antibodies[J]. Molecular Immunology, 2020, 122:141-147.doi:10.1016/j.molimm.2020.04.015. [27] Damen L A A, Westerlo E M A, Versteeg E M M, Wessel T, Daamen W F, Kuppevelt T H. Construction and evaluation of an antibody phage display library targeting heparan sulfate[J]. Glycoconjugate Journal, 2020, 37(4):445-455.doi:10.1007/s10719-020-09925-z. |