| [1] |
Allemailem K S, Alsahli M A, Almatroudi A, Alrumaihi F, Alkhaleefah F K, Rahmani A H, Khan A A. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells:an innovative strategy of cancer management[J]. Cancer Communications, 2022, 42(12):1257-1287.doi: 10.1002/cac2.12366.
pmid: 36209487
|
| [2] |
Li C, Chu W, Gill R A, Sang S F, Shi Y Q, Hu X Z, Yang Y T, Zaman Q U, Zhang B H. Computational tools and resources for CRISPR/Cas genome editing[J]. Genomics, Proteomics & Bioinformatics, 2023, 21(1):108-126.doi: 10.1016/j.gpb.2022.02.006.
|
| [3] |
Zhang D Q, Zhang Z Y, Unver T, Zhang B H. CRISPR/Cas:a powerful tool for gene function study and crop improvement[J]. Journal of Advanced Research, 2021, 29:207-221.doi: 10.1016/j.jare.2020.10.003.
URL
|
| [4] |
Wang S W, Gao C, Zheng Y M, Yi L, Lu J C, Huang X Y, Cai J B, Zhang P F, Cui Y H, Ke A W. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer[J]. Molecular Cancer, 2022, 21(1):57.doi: 10.1186/s12943-022-01518-8.
|
| [5] |
杨秀, 史姜珊, 王洪连, 王丽, 粟宏伟, 陈晨, 赵长英. 利用CRISPR/Cas9技术构建 Smad3基因敲除MPC5细胞系[J]. 生物工程学报, 2025, 41(4):1658-1670.doi: 10.13345/j.cjb.240803.
pmid: 40328723
|
|
Yang X, Shi J S, Wang H L, Wang L, Su H W, Chen C, Zhao C Y. Construction of mouse podocyte clone-5 cell lines with Smad3 knockout by CRISPR/Cas9[J]. Chinese Journal of Biotechnology, 2025, 41(4):1658-1670.
doi: 10.13345/j.cjb.240803
pmid: 40328723
|
| [6] |
Xue B B, Li H Y, Guo M M, Wang J J, Xu Y, Zou X, Deng R L, Li G D, Zhu H Z. TRIM21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS[J]. Journal of Virology, 2018, 92(14):e00321-18.doi: 10.1128/jvi.00321-18.
|
| [7] |
Li D Y, Wu M H. Pattern recognition receptors in health and diseases[J]. Signal Transduction and Targeted Therapy, 2021,6:291.doi: 10.1038/s41392-021-00687-0.
|
| [8] |
Brandli A, Vessey K A, Fletcher E L. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration:the role of toll-like-receptors and the NLRP3-inflammasome[J]. Journal of Neuroinflammation, 2024, 21(1):64.doi: 10.1186/s12974-024-03055-1.
pmid: 38443987
|
| [9] |
Zhu Q Y, Tan P, Li Y Y, Lin M, Li C R, Mao J R, Cui J, Zhao W, Wang H Y, Wang R F. DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity[J]. PLoS Pathogens, 2018, 14(2):e1006886.doi: 10.1371/journal.ppat.1006886.
URL
|
| [10] |
|
|
Yang X L, Yang D L, Bi D L, Liu F C, Zhang X W, Li Q Y, Bai J L. Research advances on the function and mechanisms of RIG-Ⅰ in antiviral innate immunity[J]. Chinese Journal of Virology, 2023, 39(5):1425-1433.
|
| [11] |
Ratajczak M Z, Kucia M. Hematopoiesis and innate immunity:an inseparable couple for good and bad times,bound together by an hormetic relationship[J]. Leukemia, 2022, 36(1):23-32.doi: 10.1038/s41375-021-01482-0.
|
| [12] |
Pham A M, Santa Maria F G, Lahiri T, Friedman E, Marié I J, Levy D E. PKR transduces MDA5-dependent signals for type I IFN induction[J]. PLoS Pathogens, 2016, 12(3):e1005489.doi: 10.1371/journal.ppat.1005489.
URL
|
| [13] |
Andrilenas K K, Ramlall V, Kurland J, Leung B, Harbaugh A G, Siggers T. DNA-binding landscape of IRF3,IRF5 and IRF7 dimers:implications for dimer-specific gene regulation[J]. Nucleic Acids Research, 2018, 46(5):2509-2520.doi: 10.1093/nar/gky002.
pmid: 29361124
|
| [14] |
Ren Z H, Ding T, Zuo Z C, Xu Z W, Deng J L, Wei Z Y. Regulation of MAVS expression and signaling function in the antiviral innate immune response[J]. Frontiers in Immunology, 2020,11:1030.doi: 10.3389/fimmu.2020.01030.
|
| [15] |
Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald K A, Tai P W L, Gao G P. Overcoming innate immune barriers that impede AAV gene therapy vectors[J]. The Journal of Clinical Investigation, 2021, 131(1):e143780.doi: 10.1172/jci143780.
URL
|
| [16] |
|
|
Yang D L, Bi D L, Yang X L, Bai J L, Li Q Y. Role of TRIM family proteins in viral infection[J]. Acta Microbiologica Sinica, 2023, 63(4):1356-1364.
|
| [17] |
Ahsan N, Shariq M, Surolia A, Raj R, Khan M F, Kumar P. Multipronged regulation of autophagy and apoptosis:emerging role of TRIM proteins[J]. Cellular & Molecular Biology Letters, 2024, 29(1):13.doi: 10.1186/s11658-023-00528-8.
|
| [18] |
Cao X W, Chen Y N, Chen Y L, Jiang M X. The role of tripartite motif family proteins in chronic liver diseases:molecular mechanisms and therapeutic potential[J]. Biomolecules, 2024, 14(8):1038.doi: 10.3390/biom14081038.
URL
|
| [19] |
Gu J J, Chen J Y, Xiang S X, Zhou X K, Li J. Intricate confrontation:research progress and application potential of TRIM family proteins in tumor immune escape[J]. Journal of Advanced Research, 2023, 54:147-179.doi: 10.1016/j.jare.2023.01.011.
URL
|
| [20] |
Liu H, Li M, Song Y H, Xu W. TRIM21 restricts coxsackievirus B3 replication,cardiac and pancreatic injury via interacting with MAVS and positively regulating IRF3-mediated type-I interferon production[J]. Frontiers in Immunology, 2018,9:2479.doi: 10.3389/fimmu.2018.02479.
|
| [21] |
Frank M B, Itoh K, Fujisaku A, Pontarotti P, Mattei M G, Neas B R. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome 11,and its polymorphisms[J]. American Journal of Human Genetics, 1993, 52(1):183-191.
pmid: 8094596
|
| [22] |
Mu T, Zhao X Q, Zhu Y N, Fan H X, Tang H. The E3 ubiquitin ligase TRIM21 promotes HBV DNA polymerase degradation[J]. Viruses, 2020, 12(3):346.doi: 10.3390/v12030346.
URL
|
| [23] |
Oke V, Wahren-Herlenius M. The immunobiology of Ro52 (TRIM21) in autoimmunity:a critical review[J]. Journal of Autoimmunity, 2012, 39(1/2):77-82.doi: 10.1016/j.jaut.2012.01.014.
URL
|
| [24] |
Liu J, Zhang C, Xu D D, Zhang T L, Chang C Y, Wang J M, Liu J, Zhang L J, Haffty B G, Zong W X, Hu W W, Feng Z H. The ubiquitin ligase TRIM21 regulates mutant p53 accumulation and gain of function in cancer[J]. The Journal of Clinical Investigation, 2023, 133(6):e164354.doi: 10.1172/jci164354.
URL
|
| [25] |
Jones E L, Laidlaw S M, Dustin L B. TRIM21/Ro52-roles in innate immunity and autoimmune disease[J]. Frontiers in Immunology, 2021,12:738473.doi: 10.3389/fimmu.2021.738473.
|
| [26] |
Das A, Dinh P X, Pattnaik A K. Trim21 regulates Nmi-IFI35 complex-mediated inhibition of innate antiviral response[J]. Virology, 2015, 485:383-392.doi: 10.1016/j.virol.2015.08.013.
pmid: 26342464
|
| [27] |
Wada K, Niida M, Tanaka M, Kamitani T. Ro52-mediated monoubiquitination of IKK down-regulates NF-B signalling[J]. Journal of Biochemistry, 2009, 146(6):821-832.doi: 10.1093/jb/mvp127.
|
| [28] |
Li J Y, Zhao Y, Gong S, Wang M M, Liu X, He Q M, Li Y Q, Huang S Y, Qiao H, Tan X R, Ye M L, Zhu X H, He S W, Li Q, Liang Y L, Chen K L, Huang S W, Li Q J, Ma J, Liu N. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models[J]. Nature Communications, 2023, 14(1):865.doi: 10.1038/s41467-023-36523-y.
|
| [29] |
Ozato K, Shin D M, Chang T H, Morse H C. TRIM family proteins and their emerging roles in innate immunity[J]. Nature Reviews Immunology, 2008, 8(11):849-860.doi: 10.1038/nri2413.
pmid: 18836477
|
| [30] |
Li Y L, Bao L B, Zheng H, Geng M Y, Chen T Y, Dai X Y, Xiao H, Yang L J, Mao C Y, Qiu Y, Xu Y, Wang D, Li M X, Chen Q. E3 ubiquitin ligase TRIM21 targets TIF1γ to regulate β-catenin signaling in glioblastoma[J]. Theranostics, 2023, 13(14):4919-4935.doi: 10.7150/thno.85662.
pmid: 37771771
|
| [31] |
James L C, Keeble A H, Khan Z, Rhodes D A, Trowsdale J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(15):6200-6205.doi: 10.1073/pnas.0609174104.
pmid: 17400754
|
| [32] |
Saxena K, Inholz K, Basler M, Aichem A. FAT10 inhibits TRIM21 to down-regulate antiviral type-I interferon secretion[J]. Life Science Alliance, 2024, 7(9):e202402786.doi: 10.26508/lsa.202402786.
URL
|
| [33] |
Tan T C, Xia L K. TRIM21 aggravates herpes simplex virus epithelial keratitis by attenuating STING-IRF3-mediated type I interferon signaling[J]. Frontiers in Microbiology, 2020,11:703.doi: 10.3389/fmicb.2020.00703.
|