| [1] |
Zhou Y, Tan W J, Xie L J, Qi H, Yang Y C, Huang L P, Lai Y X, Tan Y F, Zhou D M, Yu L J, Chen Q F, Chye M L, Xiao S. Polyunsaturated linolenoyl-CoA modulates ERF-Ⅶ-mediated hypoxia signaling in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(3):330-348.doi: 10.1111/jipb.12875.
URL
|
| [2] |
Park M E, Choi H A, Kim H U. Physaria fendleri FAD3-1 overexpression increases ɑ-linolenic acid content in Camelina sativa seeds[J]. Scientific Reports, 2023,13:7143.doi: 10.1038/s41598-023-34364-9.
|
| [3] |
Soltani Gishini M F, Zebarjadi A, Abdoli-Nasab M, Jalali Javaran M, Kahrizi D, Hildebrand D. Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed ω3 fatty acid desaturase 3 (FAD3) genes[J]. Functional & Integrative Genomics, 2020, 20(3):433-458.doi: 10.1007/s10142-019-00718-8.
|
| [4] |
Su G H, Wei Z Y, Bai C L, Li D Y, Zhao X Y, Liu X F, Song L S, Zhang L, Li G P, Yang L. Generation of codon-optimized Fad3 gene transgenic bovine that produce more n-3 polyunsaturated fatty acids[J]. Animals, 2025, 15(1):93.doi: 10.3390/ani15010093.
URL
|
| [5] |
Song L S, Yang L, Wang J P, Liu X F, Bai L G, Di A Q, Li G P. Generation of Fad2 and Fad3 transgenic mice that produce n-6 and n-3 polyunsaturated fatty acids[J]. Open Biology, 2019, 9(10):190140.doi: 10.1098/rsob.190140.
URL
|
| [6] |
魏著英, 菅璐, 杨磊, 高阳, 王东, 陈晨, 左永春, 李光鹏. 胡麻脂肪酸脱氢酶基因 fad3b过表达小鼠模型的建立及其功能分析[J]. 中国细胞生物学学报, 2017, 39(2):172-181.doi: 10.11844/cjcb.2017.02.0210.
|
|
Wei Z Y, Jian L, Yang L, Gao Y, Wang D, Chen C, Zuo Y C, Li G P. The role of fatty acid desaturase in flax fad3b in transgenic mice model[J]. Chinese Journal of Cell Biology, 2017, 39(2):172-181.
|
| [7] |
Vrinten P, Hu Z Y, Munchinsky M A, Rowland G, Qiu X. Two FAD3 desaturase genes control the level of linolenic acid in flax seed[J]. Plant Physiology, 2005, 139(1):79-87.doi: 10.1104/pp.105.064451.
URL
|
| [8] |
Banik M, Duguid S, Cloutier S. Transcript profiling and gene characterization of three fatty acid desaturase genes in high,moderate,and low linolenic acid genotypes of flax ( Linum usitatissimum L.) and their role in linolenic acid accumulation[J]. Genome, 2011, 54(6):471-483.doi: 10.1139/g11-013.
URL
|
| [9] |
Yano M, Kanesaki Y, Koumoto Y, Inoue M, Kido H. Chaperone activities of the 26S and 20S proteasome[J]. Current Protein & Peptide Science, 2005, 6(2):197-203.doi: 10.2174/1389203053545453.
|
| [10] |
Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle[J]. Cell Death & Differentiation, 2005, 12(9): 1191-1197. doi: 10.1038/sj.cdd.4401702.
|
| [11] |
Jennissen H P. Ubiquitin and the enigma of intracellular protein degradation[J]. European Journal of Biochemistry, 1995, 231(1):1-30.doi: 10.1111/j.1432-1033.1995.0001f.x.
|
| [12] |
|
| [13] |
Haas A L, Warms J V, Hershko A, Rose I A. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation[J]. Journal of Biological Chemistry, 1982, 257(5):2543-2548.doi: 10.1016/S0021-9258(18)34958-5.
pmid: 6277905
|
| [14] |
pmid: 11395416
|
| [15] |
|
| [16] |
|
|
Hui X F. PSMD12 mediates ubiquitination modification of Influenza A virus M1 protein to regulate viral replication[D]. Wuhan: Huazhong Agricultural University, 2022.
|
| [17] |
Khalil R. Ubiquitin-Proteasome pathway and muscle atrophy[M]. Muscle Atrophy. Singapore: Springer Singapore, 2018,1088:235-248.doi: 10.1007/978-981-13-1435-3_10.
|
| [18] |
Martin A, Gallot Y S, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass:data analysis from preclinical and clinical studies[J]. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14(3):1150-1167.doi: 10.1002/jcsm.13073.
|
| [19] |
Olie C S, O'Brien D P, Jones H B L, Liang Z, Damianou A, Sur-Erdem I, Pinto-Fernández A, Raz V, Kessler B M. Deubiquitinases in muscle physiology and disorders[J]. Biochemical Society Transactions, 2024, 52(3):1085-1098.doi: 10.1042/bst20230562.
pmid: 38716888
|
| [20] |
Bogan J S. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle[J]. Frontiers in Endocrinology, 2022,13:1019405.doi: 10.3389/fendo.2022.1019405.
|
| [21] |
Singh A, Yadav A, Phogat J, Dabur R. Dynamics and interplay between autophagy and ubiquitin-proteasome system coordination in skeletal muscle atrophy[J]. Current Molecular Pharmacology, 2022, 15(3):475-486.doi: 10.2174/1874467214666210806163851.
URL
|
| [22] |
Hughes D C, Goodman C A, Baehr L M, Gregorevic P, Bodine S C. A critical discussion on the relationship between E3 ubiquitin ligases,protein degradation,and skeletal muscle wasting:it's not that simple[J]. American Journal of Physiology-Cell Physiology, 2023, 325(6):C1567-C1582.doi: 10.1152/ajpcell.00457.2023.
|
| [23] |
|
|
Ji F Y. Ubiquitin protein genome analysis and potential mechanism of metastasis of hepatocellular carcinoma[D]. Hangzhou: Zhejiang University,2021.
|
| [24] |
Steger M, Karayel Ö, Demichev V. Ubiquitinomics:history,methods,and applications in basic research and drug discovery[J]. Proteomics, 2022, 22(15/16):e2200074.doi: 10.1002/pmic.202200074.
|
| [25] |
|
|
Dong J L, Li Y C, Xu P. Ubiquitinomics and its application in disease research[J]. Chinese Journal of Biochemistry and Molecular Biology, 2023, 39(3):320-331.
|
| [26] |
Ventadour S, Jarzaguet M, Wing S S, Chambon C, Combaret L, Béchet D, Attaix D, Taillandier D. A new method of purification of proteasome substrates reveals polyubiquitination of 20S proteasome subunits[J]. Journal of Biological Chemistry, 2007, 282(8):5302-5309.doi: 10.1074/jbc.M610005200.
pmid: 17189251
|
| [27] |
Wagner S A, Beli P, Weinert B T, Nielsen M L, Cox J, Mann M, Choudhary C. A proteome-wide,quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles[J]. Molecular & Cellular Proteomics, 2011, 10(10):M111.013284.doi: 10.1074/mcp.M111.013284.
|
| [28] |
|
|
Jing W, Chen Q, Li C F. Molecular mechanism of ACTN3 R577X polymorphism influences skeletal muscle function[J]. China Sport Science and Technology, 2023, 59(10):70-76.
|
| [29] |
|
|
Liu Y W. Molecular mechanisms of miR-24-3p/miR-200c-5p regulation in skeletal myogenesis and muscle fiber type transformation[D]. Wuhan: Huazhong Agricultural University, 2023.
|
| [30] |
|
|
Xu H X. Discussion on the mechanism of tropomyosin 2 in the occurrence of atherosclerosis[D]. Beijing: Beijing Institute of Geriatrics,Ministry of Health,2022.
|
| [31] |
|
|
Liu R L, Wu L, Yuan W, Bai X J, Lyu J J, Dong Y J. Screening of skeletal muscle differential genes based on transcriptome[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(S1):64-72.
doi: 10.7668/hbnxb.2018.S1.011
|
| [32] |
|
|
Ruan Z. The mechanism of medical ozone therapy for rabbit skeletal muscle injury[D]. Xianyang: Shaanxi University of Chinese Medicine,2022.
|
| [33] |
|
|
Shan K, Zhong R Q, Cheng Y L. On glycolysis (decomposition of glycogen)[J]. Journal of Shanghai University f Sport, 1980, 4(3):99-102,6.
|
| [34] |
|
|
Zhu Y J, Zhong R, Zhang Y. Ubiquitin-proteasome system:mechanism for muscle degradation and related signaling pathway[J]. Chinese Journal of Animal Nutrition, 2013, 25(5):899-904.
|
| [35] |
|
|
Yue J.Effect and mechanism of isoproterenol on myoblast differentiation and myotube fusion[D]. Shiyan: Hubei University of Medicine,2020.
|
| [36] |
|
|
Feng J. Roles of skeletal muscle growth factors,myosin,and collagen in the repair of injured skeletal muscle[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(37):5602-5608.
|
| [37] |
|
|
Cui X. Effect of selenomethionine on muscle growth in mice and its molecular mechanism[D].Harbin: Northeast Agricultural University,2022.
|
| [38] |
|
|
Tian Y, Peng S W, Dai Q Q, Peng J, Chen Y, Jiang Y S. Effect of lysine intakes on synthesis of skeletal muscle protein in rats[J]. Acta Nutrimenta Sinica, 2019, 41(4):358-362.
|
| [39] |
郭亚飞. 精氨酸对骨骼肌肌纤维类型转化的影响及其机制研究[D]. 雅安: 四川农业大学, 2018.
|
|
Guo Y F. Effect of arginine on the transformation of skeletal muscle fiber types and its mechanism[D]. Yaan: Sichuan Agricultural University, 2018.
|
| [40] |
pmid: 34374243
|
|
Jiang T, Wei X L, Xiao S Q. Effects of glutamine on exercise-induced fatigue,skeletal muscle oxidation and liver cell apoptosis in rats[J]. Chinese Journal of Applied Physiology, 2021, 37(3):293-297.
doi: 10.12047/j.cjap.6060.2021.003
pmid: 34374243
|
| [41] |
|
|
Yu Z. Regulatory mechanism of ubiquitin binding enzyme,UBE2N on the proliferation and myogenic differentiation of bovine skeletal muscle satellite cells[D].Tianjin:Tianjin Agricultural University,2022.
|
| [42] |
|
|
Zeng Y H. Effect and mechanism of Vcp and Cul5 proteins on proliferation and differentiation of bovine muscle[D].Tianjin:Tianjin Agricultural University,2021.
|
| [43] |
Huang C Y, Zhang D Q, Blecker C, Zhao Y X, Xiang C, Wang Z Y, Li S B, Chen L. Effects of phosphoglycerate kinase 1 and pyruvate kinase M2 on metabolism and physiochemical changes in postmortem muscle[J]. Food Chemistry:X, 2024,21:101125.doi: 10.1016/j.fochx.2024.101125.
|
| [44] |
Wilson G J, Layman D K, Moulton C J, Norton L E, Anthony T G, Proud C G, Rupassara S I, Garlick P J. Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats[J]. American Journal of Physiology-Endocrinology and Metabolism, 2011, 301(6):E1236-E1242.doi: 10.1152/ajpendo.00242.2011.
|
| [45] |
Liu D Y, Xia J Q, Yang Z W, Zhao X L, Li J X, Hao W J, Yang X Q. Identification of chimeric RNAs in pig skeletal muscle and transcriptomic analysis of chimeric RNA TNNI2-ACTA1 V1[J]. Frontiers in Veterinary Science, 2021,8:742593.doi: 10.3389/fvets.2021.742593.
|
| [46] |
Seto J T, Roeszler K N, Meehan L R, Wood H D, Tiong C, Bek L, Lee S F, Shah M, Quinlan K G R, Gregorevic P, Houweling P J, North K N. ACTN3 genotype influences skeletal muscle mass regulation and response to dexamethasone[J]. Science Advances, 2021, 7(27):eabg0088.doi: 10.1126/sciadv.abg0088.
|
| [47] |
Heezen L G M, Abdelaal T, van Putten M, Aartsma-Rus A, Mahfouz A, Spitali P. Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models[J]. Nature Communications, 2023,14:4909.doi: 10.1038/s41467-023-40555-9.
|
| [48] |
Brandi J, Robotti E, Manfredi M, Barberis E, Marengo E, Novelli E, Cecconi D. Kohonen artificial neural network and multivariate analysis in the identification of proteome changes during early and long aging of bovine longissimus dorsi muscle using SWATH mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2021, 69(38):11512-11522.doi: 10.1021/acs.jafc.1c03578.
URL
|