[1] Pysh L D, Wysocka-Diller J W, Camilleri C, Bouchez D, Benfey P N. The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. The Plant Journal, 1999, 18(1):111-119.doi:10.1046/j.1365-313x.1999.00431.x. [2] Tian C G, Wan P, Sun S H, Li J Y, Chen M S. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Molecular Biology, 2004, 54(4):519-532.doi:10.1023/B:PLAN.0000038256.89809.57. [3] Liu X Y, Widmer A. Genome-wide comparative analysis of the GRAS gene family in Populus, Arabidopsis and rice[J]. Plant Molecular Biology Reporter, 2014, 32(6):1129-1145.doi:10.1007/s11105-014-0721-5. [4] Guo P C, Wen J, Yang J, Ke Y Z, Wang M M, Liu M M, Ran F, Wu Y W, Li P F, Li J N, Du H. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response[J]. Planta, 2019, 250(4):1051-1072.doi:10.1007/s00425-019-03199-y. [5] Chen Y, Zhu P P, Wu S Y, Lu Y, Sun J, Cao Q H, Li Z Y, Xu T. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida[J]. BMC Genomics, 2019, 20(1):911.doi:10.1186/s12864-019-6316-7. [6] Zhang B, Liu J, Yang Z E, Chen E Y, Zhang C J, Zhang X Y, Li F G. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L.[J]. BMC Genomics, 2018, 19(1):348.doi:10.1186/s12864-018-4722-x. [7] Song L L, Tao L, Cui H P, Ling L, Guo C H. Genome-wide identification and expression analysis of the GRAS family proteins in Medicago truncatula[J]. Acta Physiologiae Plantarum, 2017, 39(4):93.doi:10.1007/s11738-017-2393-x. [8] Zhang H, Mi L M, Xu L, Yu C X, Li C, Chen C L. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange(Citrus sinensis)[J]. Scientific Reports, 2019, 9(1):2156.doi:10.1038/s41598-018-38185-z. [9] Laurenzio L D, Wysocka-Diller J, Malamy J E, Pysh L, Helariutta Y, Freshour G, Hahn M G, Feldmann K A, Benfey P N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996, 86(3):423-433.doi:10.1016/s0092-8674(00)80115-4. [10] Long Y C, Goedhart J, Schneijderberg M, Terpstra I, Shimotohno A, Bouchet B P, Akhmanova A, Gadella T W J, Heidstra R, Scheres B, Blilou I. SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement[J]. The Plant Journal, 2015, 84(4):773-784.doi:10.1111/tpj.13038. [11] Cui H C, Kong D Y, Liu X W, Hao Y L. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana[J]. The Plant Journal, 2014, 78(2):319-327.doi:10.1111/tpj.12470. [12] Zhang Z L, Ogawa M, Fleet C M, Zentella R, Hu J H, Heo J O, Lim J, Kamiya Y, Yamaguchi S, Sun T P. SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2011, 108(5):2160-2165.doi:10. 1073/pnas.1012232108. [13] Heo J O, Chang K S, Kim I A, Lee M H, Lee S A, Song S K, Lee M M, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root[J]. Proceedings of the National Academy of Sciences, 2011, 108(5):2166-2171.doi:10.1073/pnas.1012215108. [14] 马洪双, 夏新莉, 尹伟伦. 胡杨SCL7基因及其启动子片段的克隆与分析[J].北京林业大学学报, 2011, 33(1):1-10.doi:10.13332/j.1000-1522.2011.01.014. Ma H S, Xia X L, Yin W L. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University 2011, 33(1):1-10. [15] Ma H S, Liang D, Shuai P, Xia X L, Yin W L. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14):4011-4019.doi:10.1093/jxb/erq217. [16] 郭鹏, 邢新, 金华, 董燕. 玉米ZmSCL7的克隆及功能研究[J].中国农业科学, 2013, 46(12):2584-2591.doi:10.3864/j.issn.0578-1752.2013.12.020. Guo P, Xing X, Jin H, Dong Y. Cloning and functional study of ZmSCL7 in Zea mays[J]. Scientia Agricultura Sinica, 2013, 46(12):2584-2591. [17] 李丽丽, 曾卫军, 李艳红, 葛风伟, 卢函, 雷维, 杜钰, 谢红桃, 赵和平, 赵惠新. 独行菜GRAS转录因子家族分析及LaSCL18基因克隆与冷相关性研究[J].分子植物育种, 2017, 15(9):3428-3437.doi:10.13271/j.mpb.015.003428. Li L L, Zeng W J, Li Y H, Ge F W, Lu H, Lei W, Du Y, Xie H T, Zhao H P, Zhao H X. Analysis of GRAS family transcription factors, cloning and researching cold tolerance of LaSCL18 gene in Lepidium[J]. Molecular Plant Breeding, 2017, 15(9):3428-3437. [18] Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class Ⅱ TGA transcription factors and is essential for the activation of stress-inducible promoters[J]. The Plant Cell, 2008, 20(11):3122-3135.doi:10.1105/tpc.108.058974. [19] Chen K M, Li H W, Chen Y F, Zheng Q, Li B, Li Z S. TaSCL14, a novel wheat(Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence[J]. Journal of Genetics and Genomics, 2015, 42(1):21-32.doi:10.1016/j.jgg.2014.11.002. [20] Zhang S, Li X W, Fan S D, Zhou L J, Wang Y. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 151:243-254.doi:10.1016/j.plaphy.2020.03.020. [21] 张占田, 孙雅菲, 艾昊, 罗闻真, 冯冰, 孙文献, 徐国华, 孙淑斌. 水稻转录因子基因OsSHR2 的表达特征及其在营养生长中的调控作用[J].中国水稻科学, 2018, 32(5):427-436.doi:10.16819/j.1001-7216.2018.7037. Zhang Z T, Sun Y F, Ai H, Luo W Z, Feng B, Sun W X, Xu G H, Sun S B. Expression patterns and regulation of transcription factor gene OsSHR2 in vegetative growth in rice[J]. Chinese Journal of Rice Science, 2018, 32(5):427-436. [22] Zhang H, Zhu S S, Liu T Z, Wang C M, Cheng Z J, Zhang X, Chen L P, Sheng P K, Cai M H, Li C N, Wang J C, Zhang Z, Chai J T, Zhou L, Lei C L, Guo X P, Wang J L, Wang J, Jiang L, Wu C Y, Wan J M. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice[J]. Plant Biotechnology Journal, 2019, 17(2):531-539.doi:10.1111/pbi.12996. [23] Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF and LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice[J]. Molecular Plant, 2017, 10(4):590-604.doi:10.1016/j.molp.2016.12.013. [24] Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice[J]. Nature Communications, 2019, 10(1):2738.doi:10.1038/s41467-019-10667-2. [25] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice[J]. Molecular Plant, 2019, 12(8):1090-1102.doi:10.1016/j.molp.2019.04.008. [26] Liu W, Kohlen W, Lillo A, den Camp R O, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W C, Hooiveld G J E J, Charnikhova T, Bouwmeester H J, Bisseling T, Geurts R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2[J]. The Plant Cell, 2011, 23(10):3853-3865.doi:10.1105/tpc.111.089771. [27] Lin Z M, Yan J W, Su J, Liu H Q, Hu C Q, Li G, Wang F, Lin Y. Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice(Oryza sativa)[J]. Functional Plant Biology, 2019, 46(9):857-868.doi:10.1071/fp18266. [28] Xu K, Chen S J, Li T F, Ma X S, Liang X H, Ding X F, Liu H Y, Luo L J. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015, 15:141.doi:10.1186/s12870-015-0532-3. [29] Henry S, Dievart A, Divol F, Pauluzzi G, Meynard D, Swarup R, Wu S, Gallagher K L, Périn C. SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice[J]. Developmental Biology, 2017, 425(1):1-7.doi:10.1016/j.ydbio.2017.03.001. [30] Kamiya N, Itoh J I, Morikami A, Nagato Y, Matsuoka M. The SCARECROW gene's role in asymmetric cell divisions in rice plants[J]. The Plant Journal, 2003, 36(1):45-54.doi:10.1046/j.1365-313x.2003.01856.x. [31] Niu Y L, Zhao T T, Xu X Y, Li J F. Genome-wide identification and characterization of GRAS transcription factors in tomato(Solanum lycopersicum)[J]. Peer J, 2017, 5:e3955.doi:10.7717/peerj.3955. [32] Zeng X, Ling H, Chen X M, Guo S X. Genome-wide identification, phylogeny and function analysis of GRAS gene family in Dendrobium catenatum (Orchidaceae)[J]. Gene, 2019, 705:5-15.doi:10.1016/j.gene.2019.04.038. [33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi:10.1006/meth.2001.1262. [34] Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G. CRISPR-GE:A convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249.doi:10.1016/j.molp.2017.06.004. [35] Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H.Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice[J]. The Plant Journal, 2006, 47(6):969-976.doi:10.1111/j.1365-313X.2006.02836.x. [36] 陈立勇, 柴丽娟, 陈尚武, 马会勤. 葡萄SCARECROW Like 14-Like基因的表达特征及胁迫响应研究[J].中国农业大学学报, 2014, 19(3):80-87.doi:10.11841/j.issn.1007-4333.2014.03.11. Chen L Y, Chai L J, Chen S W, Ma H Q. Expression pattern and stress response of grape SCARECROW Like 14-Like gene[J]. Journal of China Agricultural University, 2014, 19(3):80-87. [37] Chen L S, Xiong G S, Cui X, Yan M X, Xu T, Qian Q, Xue Y B, Li J Y, Wang Y H. OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice[J]. Molecular Plant, 2013, 6(3):988-991.doi:10.1093/mp/sst027. [38] Yuan Y Y, Fang L C, Karungo S K, Zhang L L, Gao Y Y, Li S H, Xin H P. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3):655-666.doi:10.1007/s00299-015-1910-x. [39] Habib S, Waseem M, Li N, Yang L, Li Z G. Overexpression of SlGRAS7 affects multiple behaviors leading to confer abiotic stresses tolerance and impacts gibberellin and auxin signaling in tomato[J]. International Journal of Genomics, 2019, 2019:4051981.doi:10.1155/2019/4051981. [40] 王爽, 王永鑫, 王瑜, 李辉, 滕瑞敏, 庄静. 茶树CsCIGR 基因克隆及表达特性分析[J].西北植物学报, 2019, 39(5):867-875.doi:10.7606/j.issn.1000-4025.2019.05.0867. Wang S, Wang Y X, Wang Y, Li H, Teng R M, Zhuang J. Cloning and expression profile analysis of CsCIGR gene in Camellia sinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(5):867-875. [41] 牛义岭, 姜秀明, 许向阳. 番茄GRAS转录因子家族基因SIGLD1 的克隆及VIGS载体构建[J].基因组学与应用生物学, 2016, 35(8):2155-2160.doi:10.13417/j.gab.035.002155. Niu Y L, Jiang X M, Xu X Y. Cloning and VIGS vector construction of GRAS transcription factors family gene SIGLD1 from tomato[J]. Genomics and Applied Biology, 2016, 35(8):2155-2160. [42] 石瑞, 曹诣斌, 陈文荣, 郭卫东. 佛手GRAS基因的克隆及表达分析[J].浙江师范大学学报(自然科学版), 2011, 34(4):446-451.doi:10.3969/j.issn.1001-5051.2011.04.016. Shi R, Cao Y B, Chen W R, Guo W D. On cDNA cloning and expression analysis of GRAS gene in fingered citron[J] . Journal of Zhejiang Normal University(Nat Sci),2011, 34(4):446-451. |