[2] |
Alam O, Purugganan M D. Domestication and the evolution of crops:variable syndromes,complex genetic architectures,and ecological entanglements[J]. The Plant Cell, 2024, 36(5):1227—1241.doi: 10.1093/plcell/koae013.
|
[3] |
Kamran A, Iqbal M, Spaner D. Flowering time in wheat( Triticum aestivum L.):a key factor for global adaptability[J]. Euphytica, 2014, 197(1):1—26.doi: 10.1007/s10681-014-1075-7.
|
[4] |
Preston J C, Fjellheim S. Understanding past,and predicting future,niche transitions based on grass flowering time variation[J]. Plant Physiology, 2020, 183(3):822—839.doi: 10.1104/pp.20.00100.
pmid: 32404414
|
[5] |
|
|
Qiu L L, Ouyang X H. Research progress on latitude adaptation of crops[J]. Journal of Xiamen University(Natural Science), 2022, 61(3):459—469.
|
[6] |
Luo X, He Y H. Experiencing winter for spring flowering:a molecular epigenetic perspective on vernalization[J]. Journal of Integrative Plant Biology, 2020, 62(1):104—117.doi: 10.1111/jipb.12896.
|
[7] |
Cha J K, O'Connor K, Alahmad S, Lee J H, Dinglasan E, Park H, Lee S M, Hirsz D, Kwon S W, Kwon Y, Kim K M, Ko J M, Hickey L T, Shin D, Dixon L E. Speed vernalization to accelerate generation advance in winter cereal crops[J]. Molecular Plant, 2022, 15(8):1300—1309.doi: 10.1016/j.molp.2022.06.012.
|
[8] |
刘春怡, 杨茜, 张艺晓, 张香粉, 张兵阳, 石超男, 赵磊, 董中东, 陈锋. 小麦抽穗期的遗传调控研究进展[J]. 麦类作物学报, 2023, 43(8):992—997.doi: 10.7606/j.issn.1009-1041.2023.08.06.
|
|
Liu C Y, Yang Q, Zhang Y X, Zhang X F, Zhang B Y, Shi C N, Zhao L, Dong Z D, Chen F. Advances in genetic study of heading stage in wheat[J]. Journal of Triticeae Crops, 2023, 43(8):992—997.
|
[9] |
|
[10] |
Sharma N, Geuten K, Giri B S, Varma A. The molecular mechanism of vernalization in Arabidopsis and cereals:role of Flowering Locus C and its homologs[J]. Physiologia Plantarum, 2020, 170(3):373—383.doi: 10.1111/ppl.13163.
|
[11] |
Cann D J, Schillinger W F, Hunt J R, Porker K D, Harris F A J. Agroecological advantages of early-sown winter wheat in semi-arid environments:a comparative case study from southern Australia and Pacific Northwest United States[J]. Frontiers in Plant Science, 2020, 11:568.doi: 10.3389/fpls.2020.00568.
|
[12] |
|
|
Qiao P F, Bi Q, Li X, Chen L, Hu Y G. Effect of allelic variations of vernalization and photoperiod genes on important agronomic traits and yield in bread wheat[J]. Journal of Triticeae Crops, 2022, 42(10):1192—1199.
|
[13] |
Dai Y, Zhang S J, Sun X, Li G L, Yuan L Y, Li F, Zhang H, Zhang S F, Chen G H, Wang C G, Sun R F. Comparative transcriptome analysis of gene expression and regulatory characteristics associated with different vernalization periods in Brassica rapa[J]. Genes, 2020, 11(4):392.doi: 10.3390/genes11040392.
|
[14] |
Dai Y, Sun X, Wang C G, Li F, Zhang S F, Zhang H, Li G L, Yuan L Y, Chen G H, Sun R F, Zhang S J. Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage( Brassica rapa L.) during vernalization[J]. BMC Genomics, 2021, 22(1):236.doi: 10.1186/s12864-021-07510-8.
|
[15] |
Kim S, Kim J A, Kang H, Kim D H. A premature stop codon in BrFLC2 transcript results in early flowering in oilseed-type Brassica rapa plants[J]. Plant Molecular Biology, 2022, 108(3):241—255.doi: 10.1007/s11103-021-01231-y.
|
[16] |
王静爱, 苏筠. 中国地理纲要[M]. 北京: 北京师范大学出版社, 2022.
|
|
Wang J A, Su Y. Outline of Chinese geography[M]. Beijing: Beijing Normal University Press, 2022.
|
[17] |
|
|
Zhu X C, Liu J, Ma H B, Wang J, Liu L W, Feng G H, Liu D T. Vrn1 gene detection and effect analysis of some wheat lines from the south of Yellow and Huai River Valley winter wheat zone[J]. Jiangsu Agricultural Sciences, 2022, 50(18):69—74.
|
[18] |
Zhang B, Guo Y Y, Fan Q R, Li R B, Chen D S, Zhang X K. Characterization and distribution of novel alleles of the vernalization gene Vrn-A1 in Chinese wheat( Triticum aestivum L.) cultivars[J]. The Crop Journal, 2023, 11(3):852—862.doi: 10.1016/j.cj.2022.10.002.
|
[19] |
|
|
Feng Y, Chu W, Sui X X, Huang C Y, Cui D Z, Fan Q Q, Chu X S. Research on identification of winterness and springness of wheat varieties through the artificial vernalization method[J]. Shandong Agricultural Sciences, 2018, 50(1):9—15.
|
[20] |
|
|
Chen M X, Jiang Y R, Yu J S. Research progress of vernalization of wheat[J]. Jiangsu Agricultural Sciences, 2019, 47(24):6—12.
|
[21] |
|
|
Tian L C, Li J C, Yu H S, Nan C H. Common wheat ecological divisions and classification in China Ⅱ.Common wheat ecological classification in China[J]. Acta Agriculturae Boreali-Sinica, 1996, 11(2):19—27.
|
[22] |
赵广才. 中国小麦种植区域的生态特点[J]. 麦类作物学报, 2010, 30(4):684—686.
|
|
Zhao G C. Ecology characteristics of Chinese wheat planting region[J]. Journal of Triticeae Crops, 2010, 30(4):684—686.
|
[23] |
|
|
Wang Y Z, Liu Y X, Meng T Q, Wei S, Zhang Z M. Research progress on thermo-photoperiod development and related genes in wheat[J]. Journal of Triticeae Crops, 2023, 43(1):14—25.
|
[24] |
庄巧生. 中国小麦品种改良及系谱分析[M]. 北京: 中国农业出版社, 2003.
|
|
Zhuang Q S. Chinese wheat improvement and predigree analysis[M]. Beijing: China Agriculture Press, 2003.
|
[25] |
Ding Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4):544—564.doi: 10.1016/j.molp.2020.02.004.
pmid: 32068158
|
[26] |
Kim D H. Epigenetic repression and resetting of a floral repressor,FLC,in the life cycle of winter-annual Arabidopsis[J]. Plant Biotechnology Reports, 2022, 16(2):133—143.doi: 10.1007/s11816-021-00717-x.
|
[27] |
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10):6263—6268.doi: 10.1073/pnas.0937399100.
pmid: 12730378
|
[28] |
Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization[J]. Science, 2004, 303(5664):1640—1644.doi: 10.1126/science.1094305.
|
[29] |
Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19581—19586.doi: 10.1073/pnas.0607142103.
pmid: 17158798
|
[30] |
Dhillon T, Pearce S P, Stockinger E J, Distelfeld A, Li C X, Knox A K, Vashegyi I, VÁgújfalvi A, Galiba G, Dubcovsky J. Regulation of freezing tolerance and flowering in temperate cereals:the VRN-1 connection[J]. Plant Physiology, 2010, 153(4):1846—1858.doi: 10.1104/pp.110.159079.
pmid: 20571115
|
[31] |
Golovnina K A, Kondratenko E Y, Blinov A G, Goncharov N P. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats[J]. BMC Plant Biology, 2010, 10:168.doi: 10.1186/1471-2229-10-168.
pmid: 20699006
|
[32] |
Wang C Y, Yang X J, Li G. Molecular insights into inflorescence meristem specification for yield potential in cereal crops[J]. International Journal of Molecular Sciences, 2021, 22(7):3508.doi: 10.3390/ijms22073508.
|
[33] |
Strejcˇková B, Milec Z, Holušová K, Cápal P, Vojtková T, Cˇ egan R, Šafárˇ J. In-depth sequence analysis of bread wheat VRN1 genes[J]. International Journal of Molecular Sciences, 2021, 22(22):12284.doi: 10.3390/ijms222212284.
|
[34] |
Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat[J]. Molecular Genetics and Genomics, 2005, 273(1): 54—65. doi: 10.1007/s00438-004-1095-4.
|
[35] |
Palomino C, Cabrera A. Evaluation of the allelic variations in vernalisation(VRN1)and photoperiod(PPD1)genes and genetic diversity in a Spanish spelt wheat collection[J]. International Journal of Molecular Sciences, 2023, 24(22):16041.doi: 10.3390/ijms242216041.
|
[36] |
|
|
Zhao Y K, Zhang W S, Wang X T, Fu X Y, Jia D, Gao Z X, Shi Z L, He M Q. Analysis of winterness-springness type and vernalization genes in the main wheat cultivars from the north of Yellow and Huai valley of China[J]. Journal of Triticeae Crops, 2016, 36(11):1440—1448.
|
[37] |
Trevaskis B, Bagnall D J, Ellis M H, Peacock W J, Dennis E S. MADS box genes control vernalization-induced flowering in cereals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22):13099—13104.doi: 10.1073/pnas.1635053100.
pmid: 14557548
|
[38] |
Milec Z, Strejcˇková B, Šafárˇ J. Contemplation on wheat vernalization[J]. Frontiers in Plant Science, 2022, 13:1093792.doi: 10.3389/fpls.2022.1093792.
|
[39] |
Woods D P, Ream T S, Bouché F, Lee J, Thrower N, Wilkerson C, Amasino R M. Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25):6623—6628.doi: 10.1073/pnas.1700536114.
|
[40] |
Chen A, Dubcovsky J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering[J]. PLoS Genetics, 2012, 8(12):e1003134.doi: 10.1371/journal.pgen.1003134.
|
[41] |
Dubcovsky J, Loukoianov A, Fu D L, Valarik M, Sanchez A, Yan L L. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2[J]. Plant Molecular Biology, 2006, 60(4):469—480.doi: 10.1007/s11103-005-4814-2.
pmid: 16525885
|
[42] |
Tan C, Yan L L. Duplicated,deleted and translocated VRN2 genes in hexaploid wheat[J]. Euphytica, 2016, 208(2):277—284.doi: 10.1007/s10681-015-1589-7.
|
[43] |
Chen Y M, Song W J, Xie X M, Wang Z H, Guan P F, Peng H R, Jiao Y N, Ni Z F, Sun Q X, Guo W L. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era[J]. Molecular Plant, 2020, 13(12):1694—1708.doi: 10.1016/j.molp.2020.09.019.
pmid: 32979565
|
[44] |
Zhang H W, Jiao B, Dong F S, Liang X X, Zhou S, Wang H B. Genome-wide identification of CCT genes in wheat( Triticum aestivum L.) and their expression analysis during vernalization[J]. PLoS One, 2022, 17(1):e0262147.doi: 10.1371/journal.pone.0262147.
|
[45] |
Qin Z R, Bai Y X, Muhammad S, Wu X, Deng P C, Wu J J, An H L, Wu L. Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon[J]. Nature Communications, 2019, 10(1):812.doi: 10.1038/s41467-019-08785-y.
|
[46] |
Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K. A genetic network of flowering-time genes in wheat leaves,in which an APETALA1/FRUITFULL-like gene, VRN1,is upstream of FLOWERING LOCUS T[J]. The Plant Journal, 2009, 58(4):668—681.doi: 10.1111/j.1365-313X.2009.03806.x.
pmid: 19175767
|
[47] |
Li C X, Distelfeld A, Comis A, Dubcovsky J. Wheat flowering repressor VRN2 and promoter CO 2 compete for interactions with NUCLEAR FACTOR-Y complexes[J]. The Plant Journal, 2011, 67(5):763—773.doi: 10.1111/j.1365-313X.2011.04630.x.
|
[48] |
Turck F, Fornara F, Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage[J]. Annual Review of Plant Biology, 2008, 59:573—594.doi: 10.1146/annurev.arplant.59.032607.092755.
|
[49] |
Cao S H, Luo X M, Xu D A, Tian X L, Song J, Xia X C, Chu C C, He Z H. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis,rice,and temperate cereals[J]. New Phytologist, 2021, 230(5):1731—1745.doi: 10.1111/nph.17276.
|
[50] |
Colleoni P E, van Es S W, Winkelmolen T, Immink R G H, van Esse G W. Flowering time genes branching out[J]. Journal of Experimental Botany, 2024, 75(14):4195—4209.doi: 10.1093/jxb/erae112.
pmid: 38470076
|
[51] |
Li C X, Lin H Q, Dubcovsky J. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley[J]. The Plant Journal, 2015, 84(1):70—82.doi: 10.1111/tpj.12960.
pmid: 26252567
|
[52] |
Li C X, Lin H Q, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy[J]. Development, 2019, 146(14):dev175398.doi: 10.1242/dev.175398.
|
[53] |
Deng W, Casao M C, Wang P, Sato K, Hayes P M, Finnegan E J, Trevaskis B. Direct links between the vernalization response and other key traits of cereal crops[J]. Nature Communications, 2015, 6(1): 5882. doi: 10.1038/ncomms6882.
|
[54] |
Gao Z, Li Y X, Ou Y, Yin M N, Chen T, Zeng X L, Li R J, He Y H. A pair of readers of bivalent chromatin mediate formation of polycomb-based memory of cold in plants[J]. Molecular Cell, 2023, 83(7):1109—1124.e4.doi: 10.1016/j.molcel.2023.02.014.
|
[55] |
Tan C T. Genetic loci for vernalization requirement duration in winter wheat[D]. Oklahoma: Oklahoma State University, 2008.
|
[56] |
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression[J]. Nature, 2021, 599(7886):657—661.doi: 10.1038/s41586-021-04062-5.
|
[57] |
Dennis E S, Peacock W J. Vernalization in cereals[J]. Journal of Biology, 2009, 8(6):57.doi: 10.1186/jbiol156.
pmid: 19591652
|
[58] |
Xu S J, Chong K. Remembering winter through vernalisation[J]. Nature Plants, 2018, 4(12):997—1009.doi: 10.1038/s41477-018-0301-z.
pmid: 30478363
|
[59] |
赵杰, 刘洪泉, 赵芸, 杨锴, 傅永斌, 顾玉章, 孙丽静, 胡梦芸, 李辉, 张颖君. 北方冬麦区小麦春化基因的组成与分布及其与冬春性的关系[J]. 华北农学报, 2022, 37(5):62—67.doi: 10.7668/hbnxb.20193068.
|
|
Zhao J, Liu H Q, Zhao Y, Yang K, Fu Y B, Gu Y Z, Sun L J, Hu M Y, Li H, Zhang Y J. Composition and distribution of wheat VRN genes and their relationship with vernalization in the Northern China winter wheat region[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5):62—67.
doi: 10.7668/hbnxb.20193068
|
[60] |
Penfield S, Warner S, Wilkinson L. Molecular responses to chilling in a warming climate and their impacts on plant reproductive development and yield[J]. Journal of Experimental Botany, 2021, 72(21):7374—7383.doi: 10.1093/jxb/erab375.
|
[61] |
Saisho D, Ishii M, Hori K, Sato K. Natural variation of barley vernalization requirements:implication of quantitative variation of winter growth habit as an adaptive trait in East Asia[J]. Plant & Cell Physiology, 2011, 52(5):775—784.doi: 10.1093/pcp/pcr046.
|
[62] |
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, de Vita P. Allelic variations in vernalization( Vrn)genes in Triticum spp[J]. Genes, 2024, 15(2):251.doi: 10.3390/genes15020251.
|
[63] |
Díaz A, Zikhali M, Turner A S, Isaac P, Laurie D A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat( Triticum aestivum)[J]. PLoS One, 2012, 7(3):e33234.doi: 10.1371/journal.pone.0033234.
|
[64] |
Li G Q, Yu M, Fang T L, Cao S H, Carver B F, Yan L L. Vernalization requirement duration in winter wheat is controlled by TaVRN-A1 at the protein level[J]. The Plant Journal, 2013, 76(5):742—753.doi: 10.1111/tpj.12326.
pmid: 24033823
|
[65] |
Kippes N, Guedira M, Lin L J, Alvarez M A, Brown-Guedira G L, Dubcovsky J. Single nucleotide polymorphisms in a regulatory site of VRN-A1 first intron are associated with differences in vernalization requirement in winter wheat[J]. Molecular Genetics and Genomics, 2018, 293(5):1231—1243.doi: 10.1007/s00438-018-1455-0.
pmid: 29872926
|
[66] |
Oliver S N, Deng W W, Casao M C, Trevaskis B. Low temperatures induce rapid changes in chromatin state and transcript levels of the cereal VERNALIZATION1 gene[J]. Journal of Experimental Botany, 2013, 64(8):2413—2422.doi: 10.1093/jxb/ert095.
pmid: 23580755
|
[67] |
Oliver S N, Finnegan E J, Dennis E S, Peacock W J, Trevaskis B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20):8386—8391.doi: 10.1073/pnas.0903566106.
pmid: 19416817
|
[68] |
Liu Y, Zhu Q F, Li W Y, Chen P, Xue J, Yu Y, Feng Y Z. The pivotal role of noncoding RNAs in flowering time regulation[J]. Genes, 2023, 14(12):2114.doi: 10.3390/genes14122114.
|
[69] |
Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Molecular Plant, 2021, 14(9):1525—1538.doi: 10.1016/j.molp.2021.05.026.
|
[70] |
Xiao J, Xu S J, Li C H, Xu Y Y, Xing L J, Niu Y D, Huan Q, Tang Y M, Zhao C P, Wagner D, Gao C X, Chong K. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat[J]. Nature Communications, 2014, 5:4572.doi: 10.1038/ncomms5572.
pmid: 25091017
|
[71] |
Gendall A R, Levy Y Y, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J]. Cell, 2001, 107(4):525—535-525—535.doi: 10.1016/s0092-8674(01)00573-6.
|
[72] |
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C[J]. Current Opinion in Genetics & Development, 2023, 78:102016.doi: 10.1016/j.gde.2022.102016.
|
[73] |
Bouché F, Woods D P, Amasino R M. Winter memory throughout the plant Kingdom:different paths to flowering[J]. Plant Physiology, 2017, 173(1):27—35.doi: 10.1104/pp.16.01322.
|
[74] |
Crevillén P, Yang H C, Cui X, Greeff C, Trick M, Qiu Q, Cao X F, Dean C. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state[J]. Nature, 2014, 515(7528):587—590.doi: 10.1038/nature13722.
|
[75] |
Xu G K, Tao Z, He Y H. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation[J]. The Plant Cell, 2022, 34(6):2205—2221.doi: 10.1093/plcell/koac077.
|
[76] |
Niu D, Gao Z, Cui B W, Zhang Y X, He Y H. A molecular mechanism for embryonic resetting of winter memory and restoration of winter annual growth habit in wheat[J]. Nature Plants, 2024, 10(1):37—52.doi: 10.1038/s41477-023-01596-6.
pmid: 38177663
|
[77] |
Wang Y Y, Zeng Z K, Li J C, Zhao D H, Zhao Y, Peng C, Lan C X, Wang C P. Identification and validation of new quantitative trait loci for spike-related traits in two RIL populations[J]. Molecular Breeding, 2023, 43(8):64.doi: 10.1007/s11032-023-01401-4.
|
[78] |
Zhang X F, Chen J H, Yan Y, Yan X F, Shi C N, Zhao L, Chen F. Genome-wide association study of heading and flowering dates and construction of its prediction equation in Chinese common wheat[J]. Theoretical and Applied Genetics, 2018, 131(11):2271—2285.doi: 10.1007/s00122-018-3181-8.
pmid: 30218294
|
[79] |
|
|
He L R, Li L S, Li Z W. A study on the ear differentiation and development stage of wheat and barley[J]. Journal of Beijing Agricultural College, 1988, 3(2):18—24.
|
[80] |
|
|
Li Y H, Cui L N, Jia S S, Zhang Y M, Yan Y Y, Zheng H H, Wang S P. Effect of vernalization duration on grain number per spike of semi-winter wheat variety Shengmai 20[J]. Bulletin of Agricultural Science and Technology, 2022(7):31—33.
|
[81] |
|
|
Wang N. Vernalization duration modulates the spikelet number in common wheat[D]. Taian: Shandong Agricultural University, 2020.
|
[82] |
Finnegan E J, Ford B, Wallace X, Pettolino F, Griffin P T, Schmitz R J, Zhang P, Barrero J M, Hayden M J, Boden S A, Cavanagh C A, Swain S M, Trevaskis B. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat[J]. Plant,Cell & Environment, 2018, 41(6):1346—1360.doi: 10.1111/pce.13164.
|
[83] |
Fowler D B, Chauvin L P, Limin A E, Sarhan F. The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye[J]. Theoretical and Applied Genetics, 1996, 93(4):554—559.doi: 10.1007/BF00417947.
pmid: 24162347
|
[84] |
Fowler D B, Limin A E. Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat[J]. Annals of Botany, 2004, 94(5):717—724.doi: 10.1093/aob/mch196.
pmid: 15374834
|
[85] |
Koemel J E Jr, Guenzi A C, Anderson J A, Smith E L. Cold hardiness of wheat near-isogenic lines differing in vernalization alleles[J]. Theoretical and Applied Genetics, 2004, 109(4):839—846.doi: 10.1007/s00122-004-1686-9.
pmid: 15168023
|
[86] |
Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A[J]. Molecular Genetics and Genomics, 2003, 269(1):60—67.doi: 10.1007/s00438-003-0806-6.
pmid: 12715154
|
[87] |
Alonso-Peral M M, Oliver S N, Casao M C, Greenup A A, Trevaskis B. The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold[J]. PLoS One, 2011, 6(12):e29456.doi: 10.1371/journal.pone.0029456.
|
[88] |
Quarrie S A, Laurie D A, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals[M]// Oryza:From Molecule to Plant Dordrecht: Springer Netherlands, 1997:155—165.doi: 10.1007/978-94-011-5794-0_15.
|
[89] |
Shang Q S, Wang Y P, Tang H, Sui N, Zhang X S, Wang F. Genetic,hormonal,and environmental control of tillering in wheat[J]. The Crop Journal, 2021, 9(5):986—991.doi: 10.1016/j.cj.2021.03.002.
|
[90] |
Cao Y, Hu G, Zhuang M J, Yin J, Wang X. Molecular cloning and functional characterization of TaIRI9 gene in wheat( Triticum aestivum L.)[J]. Gene, 2021, 791:145694.doi: 10.1016/j.gene.2021.145694.
|
[91] |
|
|
Zhang P Y, Yuan Z, Wang G R, Wang T C, Yin J, Wei L, Liu Y X. Cloning and functional verification of Trx59 gene in common wheat[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(5): 1—6.
|
[92] |
Luo X M, Liu B Y, Xie L, Wang K, Xu D A, Tian X L, Xie L N, Li L L, Ye X G, He Z H, Xia X C, Yan L L, Cao S H. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering[J]. Plant Biotechnology Journal, 2024, 22(3):635—649.doi: 10.1111/pbi.14211.
|
[93] |
Greenup A, Peacock W J, Dennis E S, Trevaskis B. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals[J]. Annals of Botany, 2009, 103(8):1165—1172.doi: 10.1093/aob/mcp063.
pmid: 19304997
|
[1] |
Petereit J, Bayer P E, Thomas W J W, Tay Fernandez C G, Amas J, Zhang Y Q, Batley J, Edwards D. Pangenomics and crop genome adaptation in a changing climate[J]. Plants, 2022, 11(15):1949.doi: 10.3390/plants11151949.
|
[94] |
|
|
Zhang B N, Zhang P Y, Wang T C, Wang X, Yin J, Wei L. Expression analysis of wcor14a gene in common wheat under vernalization treatment[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(3): 163—168.
|
[95] |
Hodaei A, Werbrouck S P O. Unlocking nature's clock:CRISPR technology in flowering time engineering[J]. Plants, 2023, 12(23):4020.doi: 10.3390/plants12234020.
|
[96] |
Ahmar S, Usman B, Hensel G, Jung K H, Gruszka D. CRISPR enables sustainable cereal production for a greener future[J]. Trends in Plant Science, 2024, 29(2):179—195.doi: 10.1016/j.tplants.2023.10.016.
|