[1] 王志强, 牛良, 崔国朝, 鲁振华, 曾文芳. 我国桃栽培模式现状与发展建议[J]. 果农之友, 2015(9):3-4.doi:10.3969/j.issn.1671-7759.2015.09.001. Wang Z Q, Niu L, Cui G Z, Lu Z H, Zeng W F. Present situation and development suggestion of peach cultivation model in China[J]. Fruit Growers' Friend, 2015(9):3-4. [2] Lammerts W E. The breeding of ornamental edible peaches for mild climates. i. inheritance of tree and flower characters[J]. American Journal of Botany, 1945, 32(2):53-61.doi:10.2307/2437110. [3] Scorza R. Characterization of four distinct peach tree growth types[J]. Journal of the American Society for Horticultural Science, 1984, 109(4):455-457. [4] Moore J N, Rom R C, Brown S A, Klingaman G L.‘Bonfire’ dwarf peach, ‘Leprechaun’ dwarf nectarine, and ‘Crimson Cascade’ and ‘Pink Cascade’ weeping peaches[J]. Hortscience, 1993, 28(8):854. [5] 宗学普, 张贵荣, 王志强, 刘淑娥. 矮化型油桃新品种——矮丽红[J]. 落叶果树, 1997(2):26.doi:10.13855/j.cnki.lygs.1997.02.021. Zong X P, Zhang G R, Wang Z Q, Liu S E. A new dwarf nectarine variety-Alihong[J]. Deciduous Fruits, 1997(2):26. [6] 刘伟, 张安宁, 李桂祥, 董晓民, 陶吉寒. 山东省桃生产成本与效益分析[J].中国农学通报,2016, 32(1):88-91.doi:10.11924/j.issn.1000-6850.casb15060047. Liu W, Zhang A N, Li G X, Dong X M, Tao J H. Production cost and benefit analysis of peach in Shandong province[J]. Chinese Agricultural Science Bulletin, 2016, 32(1):88-91. [7] 刘芳,袁华招,沈欣杰,廖雄,李天红.外源GA3和PP333对甜樱桃新梢生长及赤霉素代谢关键基因表达的影响[J].核农学报, 2013, 27(3):272-278. Liu F, Yuan H S, Shen X J, Liao X, Li T H. Effects of GA3 And PP333 on shoot growth and gene expression of gibberellins metabolism in Prunus avium[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3):272-278. [8] Sugavanam B. Diastereoisomers and enantiomers of paclobutrazol:Their preparation and biological activity[J]. Pesticide Science, 2010, 15(3):296-302.doi:10.1002/ps.2780150312. [9] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase[J]. Plant Molecular Biology, 2004, 54(4):533-547.doi:10.1023/b:plan.0000038261.21060.47. [10] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences, 2002, 99(13):9043-9048.doi:10.1073/pnas.132266399. [11] Ayele B T, Magome H, Lee S, Shin K, Kamyia Y, Soh M S, Yamaguchi S. GA-sensitive dwarf1-1D, (gsd1-1D) defines a new mutation that controls endogenous GA levels in Arabidopsis[J]. Journal of Plant Growth Regulation, 2014, 33(2):340-354.doi:10.1007/s00344-013-9385-x. [12] Xu Y L, Li L, Wu K, Peeters A J, Gage D A, Zeevart J A. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase:Molecular cloning and functional expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14):6640-6644.doi:10.1073/pnas.92.14.6640. [13] Carrera E, Jackson S D, Prat S. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato[J]. Plant Physiology, 1999, 119(2):765-773.doi:10.1104/pp.119.2.765. [14] Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea[J]. Plant Physiology, 2013, 163(2):929-945.doi:10.2307/23598714. [15] Wuddineh W A, Mazarei M, Zhang J Y, Poovaiah C R, Mann D G J, Ziebell A, Sykes R W, Davis M F, Udvardi M K, Stewart C N. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance[J]. Plant Biotechnology Journal, 2015, 13(5):636-647.doi:10.1111/pbi.12287. [16] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T, Hsing Y C, Kitano H, Yamaguchi I, Matsuoka M. Gibberellin insensitive DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059):693-698.doi:10.1038/nature04028. [17] Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1997, 11(23):3194.doi:10.1101/gad.11.23.3194. [18] Mcginnis K M, Thomas S G, Soule J D, Strader L C, Zale J M, Sun T P, Steber C M. The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell, 2003, 15(5):1120-1130.doi:10.1105/tpc.010827. [19] Miller J, Gordon C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins[J]. Febs Letters, 2005, 579(15):3224-3230.doi:10.1016/j.febslet.2005.03.042. [20] Dill A, Sun T. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana[J]. Genetics, 2001, 159(2):777-785.doi:10.1002/gene.1080. [21] Li H, Wang Y, Li X, Wang Z, Zhao Y, Wang M. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1[J]. Molecular Biology Reports, 2011, 38(1):191.doi:10.1007/s11033-010-0094-2. [22] Kim S I, Park B S, Kim D Y, Yeu S Y, Song S I, Song J T, Seo H S. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development[J]. Biochemical Journal, 2015, 469(2):299-314.doi:10.1042/BJ20141302. [23] Zhou X, Zhang Z L, Park J, Tyler L, Yusuke J, Qiu K, Nam E A, Lumba S, Desveaux D, McCourt P, Kamiya Y, Sun T P. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling[J]. Plant Physiology, 2016, 171(4):2760.doi:10.1104/pp.16.00154. [24] Boss P K, Thomas M R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation[J]. Nature, 2002, 416(6883):847-850.doi:10.1038/416847a. [25] Zhu L H, Li X Y, Welander M. Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size[J]. Plant Cell Reports, 2008, 27(2):289-296.doi:10.1007/s00299-007-0462-0. [26] Hollender C A, Hadiarto T, Srinivasan C, Scorza R, Dardick C. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c[J]. New Phytologist, 2016, 210(1):227-239.doi:10.1111/nph.13772. [27] 郝鹏博, 李敏, 谭彬, 郑先波, 叶霞, 李继东, 冯建灿. 31个桃品种(系)幼树对外源GA3和PBZ的敏感性分析[J]. 江西农业学报, 2017, 29(1):11-15.doi:10.19386/j.cnki.jxnyxb.2017.01.03. Hao P B, Li M, Tan B, Zheng X B, Ye X, Li J D, Feng J C. Sensitivity analysis of 31 peach variety (line) saplings to exogenous GA3 and paclobutrazol[J]. Acta Agriculturae Jiangxi, 2017, 29(1):11-15. [28] 郝鹏博. 外源赤霉素和多效唑对桃节间长度及赤霉素代谢基因表达影响[D]. 郑州:河南农业大学, 2017. Hao P B. Effects of GA3 and PBZ on internode length and gene expression of gibberellins metabolism in peach (Prunus persica L.)[D]. Zhengzhou:Henan Agricultural University, 2017. [29] Steffens G L, Wang S Y. Biochemical and physiological alteration in apple trees caused by a gibberellin biosynthesis inhibitor, paclobutrazol[J]. Acta Horticulturae, 1986, 179(179):433-442.doi:10.17660/ActaHortic.1986.179.68. [30] Bidadi H, Yamaguchi S, Asahina M, Satoh S. Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana[J]. Plant Root, 2010, 4:4-11.doi:10.3117/plantroot.4.4. [31] Murase K, Hirano Y, Sun T P, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221):459-463.doi:10.1038/nature07519. [32] Harberd N P, Belfield E, Yasumura Y. The angiosperm Gibberellin-GID1-DELLA growth regulatory mechanism:How an "inhibitor of an inhibitor" enables flexible response to fluctuating environments[J]. Plant Cell, 2009, 21(5):1328-1339.doi:10.1105/tpc.109.066969. [33] Kawaide H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi[J]. Journal of the Agricultural Chemical Society of Japan, 2006, 70(3):583-590.doi:10.1271/bbb.70.583. [34] 邱碧云. 果树密植矮化剂——PP333[J]. 植物杂志, 1987(5):29. Qiu B Y. A dwarfing agent for dense planting of fruit trees-PP333[J]. Plants, 1987(5):29. [35] 吕文涛, 周玉珍, 娄晓鸣, 成海钟, 陈艳. 多效唑和矮壮素对盆栽朱顶红矮化的影响[J]. 湖北农业科学, 2016(16):4214-4216.doi:10.14088/j.cnki.issn0439-8114.2016.16.036. LÜ W T, Zhou Y Z, Lou X M, Cheng H D, Chen Y. Dwarfing effects of paclobutrazol and chlorocholine chloride on potted Hippeastrum vittatum[J]. Hubei Agricultural Sciences, 2016(16):4214-4216. |