[1] Abeles F B, Morgan P W, Saltveit J M E. Ethylene in plant biology[M]. Second Edition. London:Harcourt Brace Jovanovich, 2012:120-181.doi:10.1016/B978-0-08-091628-6.50015-1. [2] Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance[J]. Trends in Plant Science, 2015, 20(4):219-229.doi:10.1016/j.tplants.2015.02.001. [3] Mcmurchie E J, Mcglasson W B, Eaks I L. Treatment of fruit with propylene gives information about the biogenesis of ethylene[J]. Nature, 1972, 237(5352):235-236.doi:10.1038/237235a0. [4] Lelièvre J M, Latchè A, Jones B, Bouzayen M. Ethylene and fruit ripening[J]. Physiologia Plantarum, 2007, 26(2):143-159.doi:10.1002/9781118223086.ch11. [5] Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-Carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening[J]. Plant Physiology, 1998, 118(4):1295-1305.doi:10.2307/4278560. [6] Inaba A. Studies on the internal feedback regulation of ethylene biosynthesis and signal transduction during fruit ripening, and the improvement of fruit quality[J]. Journal of the Japanese Society for Horticultural Science, 2007, 76(1):1-12.doi:10.2503/jjshs.76.1. [7] Barry C S, Lloptous M I, Grierson D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato[J]. Plant Physiology, 2000, 123(3):979-986.doi:10.2307/4279329. [8] Naoki Y, Ryohei N, Shunsuke I, Nagata M, Inaba A, Kubo Y. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated[J]. Journal of Experimental Botany, 2009, 60(12):3433-3442.doi:10.1093/jxb/erp185. [9] Lin Z, Hong Y, Yin M, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening[J]. Plant Journal, 2008, 55(2):301-310.doi:10.1111/j.1365-313X.2008.03505.x. [10] Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN[J]. Plant Journal, 2008, 55:212-223.doi:10.1111/j.1365-313X.2008. 03491.x. [11] Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus[J]. Science, 2002, 296:343-346.doi:10.1126/science.1068181. [12] Lacey R F, Binder B M. How plants sense ethylene gas-the ethylene receptors[J]. Journal of Inorganic Biochemistry, 2014, 133(2):58-62.doi:10.1016/j.jinorgbio.2014.01.006. [13] Gao Z, Chen Y F, Randlett M D, Zhao X C, Findell J L, Kieber J J, Schaller G E. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes[J]. Journal of Biological Chemistry, 2003, 278(36):34725-34732.doi:10.1074/jbc.M305548200. [14] Zhong S, Lin Z, Grierson D. Tomato ethylene receptor CTR interactions:visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum[J]. Journal of Experimental Botany, 2008, 59(4):965-972.doi:10.1093/jxb/ern021. [15] 玉庄. 转ACC氧化酶反义基因河套蜜瓜耐贮藏品系选育[D]. 呼和浩特:内蒙古大学, 2008.doi:10.7666/d.y1376451. Yu Z. The selection of longer shelf-life strains of Cucumis melo L. cv. Hetao transformed with an antisense ACC oxidase gene[D]. Hohhot:Inner Mongolia University, 2008. [16] 田世平. 果实成熟和衰老的分子调控机制[J]. 植物学报, 2013, 48(5):481-488.doi:10.3724/SP.J.1259.2013.00481. Tian S P. Molecular regulation mechanism of fruit ripening and senescence[J]. Chinese Bulletin of Botany, 2013, 48(5):481-488. [17] Gapper N E, Mcquinn R P, Giovannoni J J. Molecular and genetic regulation of fruit ripening[J]. Plant Molecular Biology, 2013, 82(6):575-591.doi:10.1007/s11103-013-0050-3. [18] Seymour G B,φstergaard L, Chapman N H, Knapp S, Martin C. Fruit development and ripening[J]. Annual review of Plant Biology, 2013, 64(16):219-241.doi:10.1146/annurev-arplant-050312-120057. [19] 张自强,白晨,张惠忠,李晓东,付增娟,赵尚敏,鄂圆圆,张辉,王良,张必周.转录组测序及其在甜菜功能基因挖掘中的应用[J].北方农业学报,2018,46(5):39-43.doi:10.3969/j.issn.2096-1197.2018.05.06. Zhang Z Q, Bai C, Zhang H Z, Li X D, Fu Z J, Zhao S M, E Y Y, Zhang H, Wang L, Zhang B Z. Transcriptome sequencing and its application in sugar beet functional gene resource discovery[J]. Journal of Northern Agriculture, 2018,46(5):39-43. [20] Ciardi J A, Tieman D M, Jones J B. Reduced expression of the tomato ethylene receptor gene LeETR4 enhances the hypersensitive response to Xanthomonas campestris pv. vesicatoria[J]. Molecular plant-microbe interactions, 2001, 14(4):487-495.doi:10.1094/MPMI.2001.14.4.487. [21] 姚远, 高峰, 郝金凤, 哈斯阿古拉. 甜瓜乙烯信号转导途径关键因子基因CTR1 的克隆及表达特性分析[J]. 生物技术通报, 2011(11):83-87.doi:10.13560/j.cnki.biotech.bull.1985.2011.11.004. Yao Y, Gao F, Hao J F, Hasi A. Cloning and expression analysis of a key gene CTR1 in Ethylene Signal transduction in Cucumis melo[J]. Biotechnology Bulletin, 2011(11):83-87. |