[1] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiology, 2009, 149(1):88-95.doi:10.1104/pp.108.129791. [2] Amorim L L B, da Fonseca Dos Santos R, Neto J P B, Guida-Santos M, Crovella S, Benko-Iseppon A M. Transcription factors involved in plant resistance to pathogens[J]. Current Protein & Peptide Science, 2017, 18(4):335-351.doi:10.2174/1389203717666160619185308. [3] Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111.doi:10.1016/S1360-1385(01)02223-3. [4] Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2):333-350.doi:10.1104/pp.107.112821. [5] Wei K F, Chen J, Wang Y M, Chen Y H, Chen S X, Lin Y N, Pan S, Zhong X J, Xie D X. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes, 2012, 19(6):463-476.doi:10.1093/dnares/dss026. [6] Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress[J]. Protoplasma, 2017, 254(1):3-16.doi:10.1007/s00709-015-0920-4. [7] E Z G, Zhang Y P, Zhou J H, Wang L. Mini review roles of the bZIP gene family in rice[J]. Genetics and Molecular Research, 2014, 13(2):3025-3036.doi:10.4238/2014.April.16.11. [8] Noman A, Liu Z P, Aqeel M, Zainab M, Khan M I, Hussain A, Ashraf M F, Li X, Weng Y H, He S L. Basic leucine zipper domain transcription factors:the vanguards in plant immunity[J]. Biotechnology Letters, 2017, 39(12):1779-1791.doi:10.1007/s10529-017-2431-1. [9] Zhang M, Liu Y H, Shi H, Guo M L, Chai M N, He Q, Yan M K, Cao D, Zhao L H, Cai H Y, Qin Y. Evolutionary and expression analyses of soybean basic leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1):159.doi:10.1186/s12864-018-4511-6. [10] Wang J Z, Zhou J X, Zhang B L, Vanitha J, Ramachandran S, Jiang S Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. Journal of Integrative Plant Biology, 2011, 53(3):212-231.doi:10.1111/j.1744-7909.2010.01017.x. [11] Liu J Y, Chen N N, Chen F, Cai B, Dal Santo S, Tornielli G B, Pezzotti M, Cheng Z M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15(8):281.doi:10.1186/1471-2164-15-281. [12] 张珍珠, 陈秀玲, 王沛文, 戚飞, 谢莹, 王傲雪. 番茄bZIP基因家族的系统进化分析[J]. 东北农业大学学报, 2014, 45(9):47-55.doi:10.3969/j.issn.1005-9369.2014.09.007.s. Zhang Z Z, Chen X L, Wang P W, Qi F, Xie Y, Wang A X. Phyletic evolution analysis of bZIP family in tomato[J]. Journal of Northeast Agricultural University, 2014, 45(9):47-55. [13] 孙明岳, 周君, 谭秋平, 付喜玲, 陈修德, 李玲, 高东升. 苹果bZIP转录因子家族生物信息学分析及其在休眠芽中的表达[J]. 中国农业科学, 2016, 49(7):1325-1345.doi:10.3864/j.issn.0578-1752. 2016.07.010. Sun M Y, Zhou J, Tan Q P, Fu X L, Chen X D, Li L, Gao D S. Analysis of basic leucine zipper genes and their expression during bud dormancy in apple (Malus×domestica)[J]. Scientia Agricultural Sinica, 2016, 49(7):1325-1345. [14] Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shini T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena J A, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L.[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes, 2011, 18(1):65-76.doi:10.1093/dnares/dsq030. [15] Wu P Z, Zhou C P, Cheng S F, Wu Z Y, Lu W J, Han J L, Chen Y B, Chen Y, Ni P X, Wang Y, Xu X, Huang Y, Song C, Wang Z W, Shi N, Zhang X D, Fang X H, Yang Q, Jiang H W, Chen Y P, Li M R, Wang Y, Chen F, Wang J, Wu G J. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant[J]. The Plant Journal:for Cell and Molecular Biology, 2015, 81(5):810-821.doi:10.1111/tpj.12761. [16] Suyama M, Torrents D, Bork P. PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments[J]. Nucleic Acids Research, 2006, 34(SI):W609-W612.doi:10.1093/nar/gkl315. [17] Wang H B, Zou Z R, Wang S S, Gong M. Deep sequencing-based transcriptome analysis of the oil-bearing plant Physic Nut (Jatropha curcas L.) under cold treatments[J]. Plant Omics, 2014, 7(3):178-187. [18] Wang H B, Zou Z R, Wang S S, Gong M. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.[J]. PLoS One, 2013, 8(12):e82817.doi:10.1371/journal.pone.0082817. [19] tHoen P A, Ariyurek Y, Thygesen H H, Vreugdenhil E, Vossen R H, de Menezes R X, Boer J M, van Ommen G J, den Dunnen J T. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic Acids Research, 2008, 36(21):e141.doi:10.1093/nar/gkn705. [20] Morrissy A S, Morin R D, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra M A. Next-generation tag sequencing for cancer gene expression profiling[J]. Genome Research, 2009, 19(10):1825-1835.doi:10.1101/gr.094482.109. [21] Bai Y L, Zhu W B, Hu X C, Sun C C, Li Y L, Wang D D, Wang Q H, Pei G L, Zhang Y F, Guo A G, Zhao H X, Lu H B, Mu X Q, Hu J J, Zhou X N, Xie C G. Genome-wide analysis of the bZIP gene family identifies two ABI5-Like bZIP transcription factors, BrABI5a and BrABI5b, as positive modulators of ABA signalling in Chinese cabbage[J]. PLoS One, 2016, 11(7):e0158966.doi:10.1371/journal.pone.0158966. [22] Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11632-11637.doi:10.1073/pnas.190309197. [23] Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. The Plant Cell, 2000, 12(4):599-609.doi:10.2307/3871072. [24] Liu J X, Srivastava R, Howell S H. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis[J]. Plant, Cell & Environment, 2008, 31(12):1735-1743.doi:10.1111/j.1365-3040.2008.01873.x. [25] Srivastava R, Deng Y, Shah S, Rao A G, Howell S H. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis[J]. Plant Cell, 2013, 25(4):1416-1429.doi:10.1105/tpc.113.110684. [26] Liu J X, Srivastava R, Che P, Howell S H. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28[J]. Plant Cell, 2007, 19(12):4111-4119.doi:10.1105/tpc.106.050021. [27] Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H Y, Lee I, Deng X W. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development[J]. Plant Cell, 2007, 19(3):731-749.doi:10.1105/tpc.106.047688. [28] Zhang Y Q, Zheng S, Liu Z J, Wang L G, Bi Y R. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings[J]. Journal of Plant Physiology, 2011, 168(4):367-374.doi:10.1016/j.jplph.2010.07.025. [29] Singh A, Ram H, Abbas N, Chattopadhyay S. Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2012, 287(31):25995-26009.doi:10.1074/jbc.M111.333906. [30] Gangappa S N, Botto J F. The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10):1353-1365.doi:10.1016/j.molp.2016.07.002. [31] Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K. A maize DNA-binding factor with a bZIP motif is induced by low temperature[J]. Molecular & General Genetics, 1995, 248(5):507-517.doi:10.1007/bf02423445. [32] Izawa T, Foster R, Chua N H. Plant bZIP protein DNA binding specificity[J]. Journal of Molecular Biology, 1993, 230(4):1131-1144.doi:10.1006/jmbi.1993.1230. [33] Schindler U, Beckmann H, Cashmore A R. TGA1 and G-box binding factors:two distinct classes of Arabidopsis leucine zipper protiens compete for the G-box-like element TGACGTGG[J]. Plant Cell, 1992, 4(10):1309-1319.doi:10.2307/3869416. [34] Zhang Y L, Tessaro M J, Lassner M, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance[J]. Plant Cell, 2003, 15(11):2647-2653.doi:10.1105/tpc.014894. [35] Miao Z H, Liu X, Lam E. TGA3 is a distinct member of the TGA family of bZIP transcription factors in Arabidopsis thaliana[J]. Plant Molecular Biology, 1994, 25(1):1-11.doi:10.1007/bf00024193. [36] Foley R C, Singh K B. TGA5 acts as a positive and TGA4 acts as a negative regulator of ocs element activity in Arabidopsis roots in response to defence signals[J]. FEBS Letters, 2004, 563(1/3):141-145.doi:10.1016/S0014-5793(04)00288-1. [37] Mallappa C, Yadav V, Negi P, Chattopadhyay S. A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis[J]. The Journal of Biological Chemistry, 2006, 281(31):22190-22199.doi:10.1074/jbc.M601172200. [38] Terzaghi W B, Bertekap R L Jr, Cashmore A R. Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells[J]. The Plant Journal:for Cell and Molecular Biology, 1997, 11(5):967-982.doi:10.1046/j.1365-313X. 1997.11050967.x. [39] Menkens A E, Schindler U, Cashmore A R. The G-box:a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins[J]. Trends in Biochemical Sciences, 1995, 20(12):506-510.doi:10.1016/S0968-0004(00)89118-5. |