[1] Baker B,Zambryski P,Staskawicz B, Dinesh-Kumar S P. Signaling in plant-microbe interactions[J]. Science, 1997, 276:726-733.doi:10.1126/science.276.5313.726. [2] Torii K U. Receptor kinase activation and signal transduction in plants:An emerging picture[J]. Current Opinion in Plant Biology, 2000, 3(5):361-367.doi:10.1016/s1369-5266(00)00097-2. [3] Mccarty D R, Chory J. Conservation and innovation in plant signaling pathways[J]. Cell, 2000, 103(2):201-209.doi:10.1016/S0092-8674(00)00113-6. [4] Braun D M, Walker J C. Plant transmembrane receptors:New pieces in the signaling puzzle[J]. Trends in Biochemical Sciences, 1996, 21(2):70.doi:10.1016/S0968-0004(96)80185-X. [5] Walker J C, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990, 345(6277):743-746.doi:10.1038/345743a0. [6] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J]. Proc Natl Acad Sci USA, 2001, 98(19):10763-10768.doi:10.1073/pnas.181141598. [7] De S I, Voss U G, Jurgens G, Beeckman T. Receptor-like kinases shape the plant[J]. Nature Cell Biology, 2009, 11(10):1166-1173.doi:10.1038/ncb1009-1166. [8] Antolín-Llovera M, Ried M K, Binder A, Parniske M. Receptor kinase signaling pathways in plant-microbe interactions[J]. Annual Review of Phytopathology, 2012, 50(1):451-473.doi:10.1146/annurev-phyto-081211-173002. [9] 张蕾, 吕应堂. 植物受体蛋白激酶的研究进展[J]. 生命科学, 2002, 14(2):95-98.doi:10.3969/j.issn.1004-0374.2002.02.009. Zhang L, Lu Y T. Research progress of plant receptor protein kinase[J]. Chinese Bulletin of Life Sciences, 2002, 14(2):95-98. [10] Walker J C. Structure and function of the receptor-like protein kinases of higher plants[J]. Plant Molecular Biology, 1994, 26(5):1599-1609.doi:10.1007/BF00016492. [11] 朱巍巍, 马天意, 张梅娟, 沙伟. 类受体蛋白激酶在植物中的研究进展[J]. 基因组学与应用生物学, 2018, 37(1):451-458.doi:10.13417/j.gab.037.000451. Zhu W W, Ma T Y, Zhang M J, Sha W. Advances in the study of receptor-like protein kinases in plants[J]. Genomics and Applied Biology, 2018, 37(1):451-458. [12] Dievart A, Clark S. LRR-containing receptors regulate plant development and defense[J]. Development, 2004,131(2):251-261.doi:10.1242/dev.00998. [13] Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R,Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats[J]. Plant Cell, 1996, 8(4):735-746.doi:10.2307/3870348. [14] Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis[J]. Cell, 1997, 89(4):575-85.doi:10.1016/S0092-8674(00)80239-1. [15] Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission[J]. Genes & Development, 2000, 14(1):108-17.doi:10.1101/gad.14.1.108. [16] Clouse S D, Langford M, Mcmorris T C. A brassinosteroid-lnsensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiology, 1996, 111(3):671-678.doi:10.1104/pp.111.3.671. [17] Li J M, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5):929-938.doi:10.1016/S0092-8674(00)80357-8. [18] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243):1804-1806.doi:10.1126/science.270.5243.1804. [19] Wang G L, Ruan D L, Song W Y, Sideris S, Chen L L, Pi L Y, Zhang S P, Zhang Z, Fauquet C, Gaut B, Whalen M, Ronald P. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution[J]. The Plant Cell, 1998, 10(5):765-779.doi:10.2307/3870663. [20] 白辉,李莉云,刘国振. 水稻抗白叶枯病基因Xa21 的研究进展[J]. 遗传,2006, 28(6):745-753.doi:10.3321/j.issn:0253-9772.2006.06.020. Bai H, Li L Y, Liu G Z. Research progress of rice bacterial blight resistance gene Xa21[J]. Hereditas, 2006, 28(6):745-753. [21] Park C J, Lee S W, Chern M, Sharma R, Canlas P E, Song M Y, Jeon J S, Ronald P C. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae[J]. Plant Science An International Journal of Experimental Plant Biology, 2010, 179(5):466-471.doi:10.1016/j.plantsci.2010.07.008. [22] Zhou Y B, Wang D, Wu T, Yang Y Z, Liu C, Yan L, Tang D Y, Zhao X Y, Zhu Y H, Lin J Z, Liu X M. LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice[J]. Molecular Breeding, 2018, 38(5):48.doi:10.1007/s11032-018-0811-4. [23] Bettembourg M, Dal-Soglio M, Bureau C, Vernet A, Dardoux A, Portefaix M, Bes M, Meynard D, Mieulet D, Cayrol B, Perin C, Courtois B, Ma J F, Dievart A. Root cone angle is enlarged in docs1 LRR-RLK mutants in rice[J]. Rice, 2017, 10(1):50.doi:10.1186/s12284-017-0190-1. [24] Wang D X, Yang C J, Wang H J, Wu Z H, Jiang J, Liu J J, He Z N, Chang F, Ma H, Wang X L. BKI1 regulates plant architecture through coordinated inhibition of the brassinosteroid and ERECTA signaling pathways in Arabidopsis[J]. Molecular Plant, 2017, 10(2):297-308.doi:10.1016/j.molp.2016.11.014. [25] Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna J F, Vernhettes S, Koevoets I, Tintor N, Veerabagu M, Miedes E, Segonzac C, Roux M, Breda A S, Hardtke C S, Molina A, Rep M, Testerink C, Mouille G, Höfte H, Hamann T, Zipfel C. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses[J]. PLoS Genetics, 2017, 13(6):e1006832.doi:10.1371/journal.pgen.1006832. [26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 method[J]. Methods, 2001, 25(4):402-408.doi:10.1006/meth.2001.1262. [27] Sparkes I A, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 2006, 1(4):2019-2025.doi:10.1038/nprot.2006.286. [28] Wang J, Liu S H, Li C C, Wang T L, Zhang P Y, Chen K S. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively pegulates salinity and oxidation-stress tolerance[J]. PLoS One, 2017, 12(2):e0172869.doi:10.1371/journal.pone.0172869. [29] Liu P L, Du L, Huang Y, Gao S M, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants[J]. BMC Evolutionary Biology, 2017, 17(1):47.doi:10.1186/s12862-017-0891-5. [30] Wang J, Li C C, Yao X H, Liu S H, Zhang P Y, Chen K S. The Antarctic moss leucine-rich repeat receptor-like kinase (PnLRR-RLK2) functions in salinity and drought stress adaptation[J]. Polar Biology, 2018,41(2):353-364.doi:10.1007/s00300-017-2195-z. [31] Wang J, Liu S, Li C, Wang T, Zhang P, Chen K. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance[J]. PLoS One, 2017, 12(2):e0172869.doi:10.1371/journal.pone.0172869. |