华北农学报 ›› 2018, Vol. 33 ›› Issue (6): 42-48. doi: 10.7668/hbnxb.2018.06.006

所属专题: 油料作物 植物保护 生物技术

• 论文 • 上一篇    下一篇

花生几丁质酶基因的克隆及抗病性验证

郭悦1, 姜平平1, 潘雷雷1, 周文杰2, 徐磊1, 张茹琴3, 隋炯明2, 郭宝太2, 王晶珊2, 乔利仙2   

  1. 1. 青岛农业大学 生命科学学院, 山东省高校植物生物技术重点实验室, 山东 青岛 266109;
    2. 青岛农业大学 农学院, 山东省旱作农业技术重点实验室, 山东 青岛 266109;
    3. 青岛农业大学 植物医学学院, 山东 青岛 266109
  • 收稿日期:2018-09-28 出版日期:2018-12-28
  • 作者简介:郭悦(1992-),女,山东枣庄人,在读硕士,主要从事植物基因工程研究。
  • 基金资助:
    国家自然科学基金项目(31471524;31571705);山东省重点研发计划项目(2018GNC111014);农业部油料作物生物学与遗传育种重点实验室开放课题基金项目(KF2018008)

Cloning and Disease Resistance Verification of Chitinase Gene in Peanut

GUO Yue1, JIANG Pingping1, PAN Leilei1, ZHOU Wenjie2, XU Lei1, ZHANG Ruqin3, SUI Jiongming2, GUO Baotai2, WANG Jingshan2, QIAO Lixian2   

  1. 1. College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong, Qingdao 266109, China;
    2. College of Agronomy, Qingdao Agricultural University, Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao 266109, China;
    3. College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
  • Received:2018-09-28 Published:2018-12-28

摘要: 为了探讨花生几丁质酶在抵御真菌性病害中的作用,克隆了花生几丁质酶基因并通过遗传转化验证了该基因的功能。以花生品种花育23号基因组DNA和RNA为模板,通过PCR及RT-PCR扩增分别获得长度为1 779 bp的花生几丁质酶基因DNA序列及795 bp的全长cDNA序列。DNA及cDNA序列比对结果表明,该基因包含3个外显子和2个内含子,内含子剪切符合"GT……AG"规则,其cDNA序列被命名为Ah-Chi,编码265个氨基酸,GenBank注册号为HQ439775。利用NCBI在线Blast进行序列比对,结果表明,该蛋白产物与水稻、玉米、紫花苜蓿、大豆、拟南芥的相关蛋白的同源性分别达到83%,83%,72%,58%,49%。用Ah-Chi替换掉植物表达载体pCAMBIA1301上的Gus基因,成功构建了植物过表达载体pCAMBIA1301-Ah-Chi。利用农杆菌介导法将pCAMBIA1301-Ah-Chi转化花生胚小叶外植体,获得再生小苗,经嫁接移栽获得再生植株。利用PCR扩增筛选获得转基因阳性植株,RT-PCR扩增结果表明,转基因植株中Ah-Chi基因表达量增加。用黑斑病菌接种转基因植株和非转基因对照植株离体叶片7 d后,发现非转基因植株叶片褐化及坏死程度较为严重,而转基因植株叶片褐化及坏死程度相对较轻,初步说明转基因植株抗病性增强。

关键词: 花生, 几丁质酶基因, 遗传转化, 抗病性, 黑斑病菌

Abstract: The chitinase gene was cloned and its function was further analyzed by genetic transformation, aiming at exploring the role of chitinase gene in resisting fungal diseases in peanut.The DNA (1 779 bp) and cDNA (795 bp) of peanut chitinase gene were obtained successfully by PCR and RT-PCR amplification, with the genomic DNA and cDNA of peanut variety Huayu 23 as templates respectively.The sequence alignment result between DNA and cDNA showed that peanut chitinase gene contained three exons and two introns, conforming to "GT……AG" rule in intron splicing. The cDNA coding sequence contained 795 bp, coded for a 265-amino acid protein, and was named by Ah-Chi, which was registered in NCBI (GenBank accession No. HQ439775). As determined by Blast analysis, the Ah-Chi protein had homology with proteins from Oryza sativa (83%), Zea mays (83%), Medicago sativa (72%), Glycine max (58%) and Arabidopsis thaliana (49%). The over-expression vector pCAMBIA1301-Ah-Chi was constructed successfully by substituting Gus of pCAMBIA1301 for Ah-Chi, and then was transformed into peanut embryonic leaflets explants by Agrobacterium EHA105 mediated transformation. The regenerated plants were then obtained by grafting and transplanting those regenerated somatic embryo seedlings.These transgenic positive plants were further screened and verified by PCR amplification, and the increased expression level of Ah-Chi was confirmedin transgenic plants by RT-PCR amplification. Cercosporidium personatum was inoculated to the detached leaves of transgenic and non-transgenic plants. Seven days later, it was found that the non-transgenic plants showed more serious leaves' browning and necrosis than transgenic plants, which indicated that the disease resistance of transgenic plants were enhanced.

Key words: Peanut, Chitinase gene, Genetic transformation, Disease resistance, Cercosporidium personatum

中图分类号: 

引用本文

郭悦, 姜平平, 潘雷雷, 周文杰, 徐磊, 张茹琴, 隋炯明, 郭宝太, 王晶珊, 乔利仙. 花生几丁质酶基因的克隆及抗病性验证[J]. 华北农学报, 2018, 33(6): 42-48. doi: 10.7668/hbnxb.2018.06.006.

GUO Yue, JIANG Pingping, PAN Leilei, ZHOU Wenjie, XU Lei, ZHANG Ruqin, SUI Jiongming, GUO Baotai, WANG Jingshan, QIAO Lixian. Cloning and Disease Resistance Verification of Chitinase Gene in Peanut[J]. ACTA AGRICULTURAE BOREALI-SINICA, 2018, 33(6): 42-48. doi: 10.7668/hbnxb.2018.06.006.