[1] Kebrom T H, Spielmeyer W, Finnegan E J. Grasses provide new insights into regulation of shoot branching[J]. Trends in Plant Science, 2013, 18(1):41-48.
[2] Kuraparthy V, Sood S, Dhaliwal H S, et al. Identification and mapping of a tiller inhibition gene (tin3) in wheat[J]. Theoretical and Applied Genetics, 2007, 114(2):285-294.
[3] Mauro-Herrera M, Doust A N. Development and genetic control of plant architecture and biomass in the panicoid grass, setaria[J]. PLoS One, 2016, 11(3):e0151346.
[4] McSteen P, Leyser O. Shoot branching[J]. Annual Review of Plant Biology, 2005, 56:353-374.
[5] Doust A N. Grass architecture:genetic and environmental control of branching[J]. Current Opinion in Plant Biology, 2007, 10(1):21-25.
[6] 刘瑞华, 崔贞玉, 冯权. 水稻分蘖期的温度条件与适宜移栽密度的研究[J]. 吉林农业科学, 1993(3):40-43.
[7] 丁艳锋. 氮素营养调控水稻群体质量指标的研究[D]. 南京:南京农业大学, 1997:20-24.
[8] Dun E A, de Saint Germain A, Rameau C, et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control[J]. Plant Physiology, 2012, 158(1):487-498.
[9] Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932):618-621.
[10] Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiology, 2005, 46(1):79-86.
[11] Booker J, Auldridge M, Wills S, et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule[J]. Current Biology, 2004, 14(14):1232-1238.
[12] Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. The Plant Journal, 2007, 51(6):1019-1029.
[13] Arite T, Umehara M, Ishikawa S, et al. D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant Cell Physiology, 2009, 50(8):1416-1424.
[14] Lin H, Wang R X, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. The Plant Cell, 2009, 21(5):1512-1525.
[15] Xu C, Wang Y H, Yu Y C, et al. Degradation of MONOCULM 1 by APC/C (TAD1) regulates rice tillering[J]. Nature Communications, 2012, 3:750.
[16] Lin Q B, Wang D, Dong H, et al. Rice APC/C (TE) controls tillering by mediating the degradation of MONOCULM 1[J]. Nature Communications, 2012, 3:752.
[17] Jiang L, Liu X, Xiong G S, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504:401-405.
[18] Tanaka W, Ohmori Y, Ushijima T, et al. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1[J]. The Plant Cell, 2015, 27(4):1173-1184.
[19] Xu J X, Zha M R, Li Y, et al. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2015, 34(9):1647-1662.
[20] Zuo J R, Li J Y. Molecular dissection of complex agronomic traits of rice:a team effort by Chinese scientists in recent years[J]. National Science Review, 2014, 1(2):253-276.
[21] Li W L, Nelson J C, Chu C Y, et al. Chromosomal locations and genetic relationships of tiller and spike characters in wheat[J]. Euphytica, 2002, 125(3):357-366.
[22] Li Z K, Peng T, Xie Q G, et al. Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations[J]. Indian Academy of Sciences, 2010, 89(4):409-415.
[23] Naruoka Y, Talbert L E, Lanning S P, et al. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat[J]. Theoretical and Applied Genetics, 2011, 123(6):1043-1053.
[24] Doust A N, Devos K M, Gadberry M D, et al. Genetic control of branching in foxtail millet[J]. Proceeding of National Academy of Sciences of the United States of American, 2004, 101(24):9045-9050.
[25] Doust A N, Kellogg E A. Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae)[J]. Molecular Ecology, 2006, 15(5):1335-1349.
[26] Jia G Q, Huang X H, Zhi H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica)[J]. Nature Genetics, 2013, 45(8):957-961.
[27] Zhang K, Fan G, Zhang X, et al. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing[J]. G3(Bethesda), 2017, 7(5):1587-1594.
[28] Bennetzen J L, Schmutz J, Wang H, et al. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology, 2012, 30(6):555-561.
[29] Zhang G Y, Liu X, Quan Z W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology, 2012, 30:549-554.
[30] Sato K, Mukainari Y, Naito K, et al. Construction of a foxtail millet linkage map and mapping of spikelet-tipped bristles 1(stb1) by using transposon display markers and simple sequence repeat markers with genome sequence information[J]. Molecular Breeding, 2013, 31(3):675-684.
[31] Masumoto H, Takagi H, Mukainari Y, et al. Genetic analysis of NEKODE1 gene involved in panicle branching of foxtail millet, Setaria italica (L.) P. Beauv., and mapping by using QTL-seq[J]. Molecular Breeding, 2016, 36:59.
[32] Zhang S, Tang C J, Zhao Q, et al. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in foxtail millet (Setaria italica (L.) P. Beauv.)[J]. BMC Genomics, 2014, 15:78.
[33] Xue C X, Zhi H, Fang X J, et al. Characterization and fine mapping of SiDWARF2(D2) in foxtail millet[J]. Crop Science, 2016, 56(1):95.
[34] Li W, Tang S, Zhang S, et al. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet (Setaria italica (L.) P. Beauv.)[J]. Physiologia Plantarum, 2016, 157(1):24-37.
[35] Liu X T, Tang S, Jia G Q, et al. The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv.)[J]. Joural of Experimental Botany, 2016, 67(11):3237-3249.
[36] Xiang J S, Tang S, Zhi H, et al. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet (Setaria italica (L.) P. Beauv.)[J]. PLoS One, 2017, 12(6):e0178730.
[37] Fan X K, Tang S, Zhi H, et al. Identification and fine mapping of SiDWARF3(D3), a pleiotropic locus controlling environment-independent dwarfism in foxtail millet[J]. Crop Science, 2017, 57(5):2431-2442.
[38] 王冠杰, 周波, 李玉花. RAD标记测序及其在分子育种中的应用[J]. 中国生物化学与分子生物学报, 2012, 28(9):797-803.
[39] Wang J, Wang Z L, Du X F, et al. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet(Setaria italica (L.) P. Beauv.) using RAD-seq[J]. PLoS One, 2017, 12(6):e0179717.
[40] Wang J, Yang H Q, Du G H, et al. Mapping of Sihc1, which controls hull color, using a high-density genetic map based on restriction site-associated DNA sequencing in foxtail millet (Setaria italica (L.) P. Beauv.)[J]. Molecular Breeding, 2017, 37:128.
[41] Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications[J]. Plant Molecular Biology Reporter, 1999, 17(1):53-57.
[42] Baird N A, Etter P D, Atwood T S, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers[J]. PLoS One, 2008, 3(10):e3376.
[43] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760.
[44] McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 28(1):1297-1303.
[45] Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
[46] Wu Y H, Bhat P R, Close T J, et al. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph[J]. PLoS Genetics, 2008, 4(10):e1000212.
[47] Wang S, Basten C J, Zeng Z B. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC[EB/OL].[2012-02-05]. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
[48] Marklund S, Chaudhary R, Marklund L, et al. Extensive mtDNA diversity in horses revealed by PCR-SSCP analysis[J]. Animal Genetics, 1995, 26(3):193-196.
[49] Weng Y Q, Colle M, Wang Y H, et al. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes[J]. Theoretical and Applied Genetics, 2015, 128(9):1747-1763.
[50] Tomaszewski C, Byrne S L, Foito A, K et al. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers[J]. Plant Breeding, 2012, 131(2):345-349.
[51] Barakat M N, Wahba L E, Milad S I. Molecular mapping of QTLs for wheat flag leaf senescence under water-stress[J]. Biologia Plantarum, 2013, 57(1):79-84.
[52] Herlina L, Sobir S, Trijatmiko K R. Identification of quantitative trait loci (QTL) for awn, incomplete panicle exertion and total spikelet number in an F2 population derived from a backcross inbred line, Bio-148, and the recurrent parent, IR64[J]. Makara Journal of Science, 2016, 20(1):17-27.
[53] Thyssen G N, Fang D D, Turley R B, et al. Next generation genetic mapping of the Ligon-lintless-2(Li2) locus in upland cotton (Gossypium hirsutum L.)[J]. Theoretical and Applied Genetics, 2014, 127(10):2183-2192.
[54] Li L B, Zhao S Q, Su J J, et al. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.)[J]. PLoS One, 2017, 12(8):e0182918.
[55] 赵庆英, 张瑞娟, 王瑞良, 等. 基于名优谷子品种晋谷21全基因组重测序的分子标记开发[J]. 作物学报, 2018, 4(5):686-696.
[56] 姜童, 王辉, 陈宁, 等. 利用InDel指纹图谱评价鲁西南地区簇生朝天椒品种的相似度[J]. 华北农学报, 2018, 33(2):126-132.
[57] 田希辉, 于拴仓, 苏同兵, 等. 一个新的白菜苗期TuMV-C4抗性主效QTL定位及连锁分子标记开发[J]. 华北农学报, 2014, 29(6):1-5. |