[1] 齐虹凌,贺国强,李恒全,等.轮作与连作对烤烟不同生育期根际土壤细菌群落结构的影响[J].中国烟草学报, 2015, 21(5):42-48.
[2] 赵殿峰,徐静,罗璇,等.生物炭对土壤养分、烤烟生长以及烟叶化学成分的影响[J].西北农业学报, 2014, 23(3):85-92.
[3] 陈尧,郑华,石俊雄,等.施用化肥和菜籽粕对烤烟根际微生物的影响[J].土壤学报, 2012, 49(1):198-203.
[4] 宋久洋,刘领,陈明灿,等.生物质炭施用对烤烟生长及光合特性的影响[J].河南科技大学学报:自然科学版, 2014, 35(4):68-72.
[5] 李航,董涛,王明元.生物炭对香蕉苗根际土壤微生物群落与代谢活性的影响[J].微生物学杂志, 2016, 36(1):42-48.
[6] 韩光明,孟军,曹婷,等.生物炭对菠菜根际微生物及土壤理化性质的影响[J].沈阳农业大学学报, 2012, 43(5):515-520.
[7] 孙大荃,孟军,张伟明,等.生物炭对棕壤大豆根际微生物的影响[J].沈阳农业大学学报, 2011, 42(5):521-526.
[8] 毛家伟,张锦中,张翔,等.豫东烟区生物炭对烤烟生长发育及经济性状的影响[J].安徽农业科学, 2013, 41(35):13516-13517.
[9] 叶协锋,李志鹏,于晓娜,等.生物炭用量对植烟土壤碳库及烤后烟叶质量的影响[J].中国烟草学报, 2015, 21(5):33-41.
[10] 湛方栋,陆引罡,关国经,等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报, 2005, 42(3):488-494.
[11] 赵秋芳,马海洋,王辉,等.生物炭对香草兰生长及根际土壤微生物的影响[J].湖北农业科学, 2015, 54(22):5647-5651.
[12] 刘领,王艳芳,宋久洋,等.生物炭与氮肥减量配施对烤烟生长及土壤酶活性的影响[J].河南农业科学, 2016, 45(2):62-66.
[13] Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(S):4516-4522.
[14] Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen[J]. Science, 2011, 331(616):463-467.
[15] Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
[16] Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998.
[17] Wang Q, Garrity G M, Tiedje J M, et al. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267.
[18] Desantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7):5069-5072.
[19] Gulino L M, Ouwerkerk D, Kang A Y, et al. Shedding light on the microbial community of the macropod foregut using 454-amplicon pyrosequencing[J]. PLoS One, 2013, 8(4):e61463.
[20] Graber E R, MellerHarel Y, Kolton M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 2010, 337(1/2):481-496.
[21] Van Zwieten L, Kimber S, Morris S, et al. effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2):235-246.
[22] Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009, 41(6):1301-1310.
[23] Matthias C R, Marcel W, Mohamed S, et al. Material derived from hydrothermal carbonization:effects on plant growth and Arbuscular mycorrhiza[J]. Applied Soil Ecology, 2010, 45(3):238-242.
[24] Rondon M A, Lehmann J, Ramírez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions[J]. Biology and Fertility of Soils, 2007, 43(6):699-708.
[25] Yamato M, Okimori Y, Wibowo I F, et al. Effects of the application of charred bark of Acacia mangium on the yield of maize,cowpea and peanut,and soil chemical properties in South Sumatra,Indonesia[J]. Soil Science&Plant Nutrition, 2006, 52(4):489-495.
[26] Li X, Zhang H, Wu M, et al. Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis[J]. Journal of Environmental Sciences-China, 2008, 20(5):619-625.
[27] Grossman J M, O'neill B E, Tsai S M, et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microbial Ecology, 2010, 60(1):192-205.
[28] 陈泽斌,李冰,王定康,等.薄荷内生细菌的多样性及组成分析[J].浙江农业学报, 2016, 28(1):56-63.
[29] 赵帅,周娜,赵振勇,等.基于高通量测序分析盐角草根部内生细菌多样性及动态规律[J].微生物学报, 2016, 56(6):1000-1008.
[30] 徐慧敏,闫海,马松,等.鞘氨醇单胞菌USTB-05对微囊藻毒素的生物降解[J].中国环境科学, 2014, 34(5):1316-1321. |