[1] Bassler B L,Wright M,Showalter R E,Silverman M R.Intercellular signalling in Vibrio harveyi:sequence and function of genes regulating expression of luminescence[J]. Mol Microbiol,1993, 9(4):773-786.doi:10.1111/j.1365-2958.1993.tb01737.x. [2] Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. J Bacteriol, 1994,176(2):269-275.doi:10.1128/jb.176.2.269-275.1994. [3] Zhao Q, Zhang C, Jia Z H, Huang Y L, Li H L, Song S S. Involvement of calmodulin in regulation of primary root elongation by N -3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana[J]. Front Plant Sci,2015, 5:807.doi:10.3389/fpls.2014.00807. [4] Zhao Q, Li M, Jia Z H, Liu F, Ma H, Huang Y L, Song S S.AtMYB44 positively regulates the enhanced elongation of primary roots induced by N -3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana[J]. Mol Plant Microbe Interact,2016, 29(10):774-785.doi:10.1094/MPMI-03-16-0063-R. [5] Shenk S T, Schikora A. AHL-priming functions via oxylipin and salicylic acid[J]. Front Plant Sci,2015, 5:784.doi:10.3389/fpls.2014.00784. [6] 赵芊, 宋水山. N -酰基高丝氨酸内酯调控植物生长发育的研究进展[J]. 植物生理学通讯,2010, 46(10):980-984.doi:10.13592/j.cnki.ppj.2010.10.005. Zhao Q,Song S S. Advances in the regulation of plant growth and development by N -acyl-homoserine lactones[J]. Plant Physiology Newsletter,2010,46(10):980-984. [7] 赵芊, 贾振华, 宋水山. 细菌信号分子 N -酰基高丝氨酸内酯调控植物抗性的研究进展[J]. 植物生理学报, 2014,50(2):143-149.doi:10.13592/j.cnki.ppj.2014.02.003. Zhao Q,Jia Z H,Song S S. Advances in regulation of plant resistance by N-acyl-homoserine lactones,the bacterial quorum-sensing signals[J]. Plant Physiology Journal, 2014,50(2):143-149. [8] Oridi M E,Bouarab K. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea[J]. New Phytologist,2007,175(1):131-139.doi:10.1111/j.1469-8137.2007.02086.x. [9] Abramovitch R B,Martin G B. AvrPtoB:a bacterial type Ⅲ effector that both elicits and suppresses programmed cell death associated with plant immunity[J]. Fems Microbiology Letters,2005,245(1):1-8.doi:10.1016/j.femsle.2005.02.025. [10] Bouarab K,Melton R,Peart J,Baulcombe D,Osboutn A.A saponin-detoxifying enzyme mediates suppression of plant defences[J] .Nature, 2002,418(6900):889-892.doi:10.1038/nature00950. [11] Chisholm S T,Coaker G,Day B,Staskawicz B J. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006,124(4):803-814.doi:10.1016/j.cell.2006.02.008. [12] Hann D R,Gimenez-Ibanez S,Rathjen J P.Bacterial virulence effectors and their activities[J]. Current Option in Plant Biology,2010,13(4):388-393.doi:10.1016/j.pbi.2010.04.003. [13] Janjusevic R,Abramovitch R B,Martin G B,Stebbins C E.A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase[J]. Science,2006,311(5758):222-226.doi:10.1126/science.1120131. [14] Nomura K, DebRoy S, Lee Y H, Pumplin N, Jones J, He S Y.A bacterial virulence protein supresses host innate immunity to cause plant disease[J]. Science,2006,313(5784):220-223.doi:10.1126/science.1129523. [15] Rigano L A, Payette C, Brouillard G, Marano M R, Abramowicz L,Torres P S,Yun M, Castagnaro A P, Oirdi E M, Dufour V, Malamud F, Dow J M, Bouarab K,Vojnov A A.Bacterial cyclic β-(1,2)-glucan acts in systemic suppression of plant immune responses[J]. The Plant Cell, 2007,19(6):2077-2089.doi:10.1105/tpc.106.047944. [16] Yun M H,Torres P S, Oirdi M E, Rigano L A,Gonzalez-Lamothe R, Marano M R,Castagnaro A P,Dankert M A,Bouarab K,Vojnov A A. Xanthan induces plant susceptibility by suppressing callose deposition[J]. Plant Physiology,2006,141(1):178-187.doi:10.1104/pp.105.074542. [17] Mou Z L, Fan W H, Dong X N. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J]. Cell,2003,113(7):935-944.doi:10.1016/s0092-8674(03)00429-x. [18] 邹庆道,张子君,徐明,李海涛.番茄抗灰霉病材料叶、茎和果实抗性的相关性研究[J].园艺学报,2009,36(S1):1972. Zou Q D, Zhang Z J, Xu M, Li H T. Studies on the correlation of leaf, stem and fruit resistance of tomato to gray mold resistance materials[J]. Acta Horticulturae Sinica, 2009, 36 (S1):1972. [19] 田龙,淡昭菊,关迎池.大棚番茄灰霉病流行规律观察试验[J].湖北植保,2017(2):9-11.doi:10.3969/j.issn.1005-6114.2017.02.005. Tian L, Dan Z J, Guan Y C. Observation and experiment on the epidemic law of tomato gray mold in greenhouses[J]. Hubei Plant Protection, 2017(2):9-11. [20] Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction[J]. The Plant Journal,1997,11(6):1187-1194.doi:10.1046/j.1365-313X.1997.11061187.x. [21] Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J]. Annu Rev Plant Mol Biol,1997,48:251-275.doi:10.1146/annurev.arplant.48.1.251. [22] Wojtaszek P.Oxidative burst:an early plant response to pathogen infection[J]. Biochem,1997,322(3):681-692.doi:10.1042/bj3220681. [23] Thoma I, Loeffler C, Sinha A K, Gupta M, Krischke M, Steffan B,Roitsch T, Mueller M J. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants[J]. The Plant Journal,2003,34(3):363-375.doi:10.1046/j.1365-313x.2003.01730.x. [24] Hartmann A, Schenk S T, Riedel T, Schröder P, Schikora A.The response of plants toward N -acyl homoserine lactones of quorum-sensing-active bacteria in the rhizosphere[J]. Molecular Microbial Ecology of the Rizosphere 1 & 2,2013,73:77-783.doi:10.1002/9781118297674.ch73. [25] Schikora A, Schenk S T, Stein E, Molitor A, Zuccaro A, Kogel K H.N-acyl-homoserine lactone confers resistance towards biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6[J]. Plant Physiol, 2011,157(3):1407-1418.doi:10.1104/pp.111.180604. [26] Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C,Vogg G, Hutzler P, Schmid M, Breusegem F V, Eberl L, Hartmann A, Langebartels C.Induction of systemic resistance in tomato by N -acyl-L-homoserine lactone-producing rhizosphere bacteria[J].Plant Cell Environ, 2006, 29(5):909-918.doi:10.1111/j.1365-3040.2005.01471.x. [27] Zarkani A A, Stein E, Röhrich C R, Schikora M, Evguenieva-Hackenberg E,Degenkolb T, Vilcinskas A, Klug G, Kogel K H, Schikora A. Homoserine lactones influence the reaction of plants to rhizobia[J]. Int J Mol Sci, 2013,14(8):17122-17146.doi:10.3390/ijms140817122. [28] Hernández-Reyes C, Schenk S T, Neumann C, Kogel K H,Schikora A.N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens[J]. Microb Biotechnol, 2014,7(6):580-588.doi:10.1111/1751-7915.12177. [29] Hu Z J,Shao S J,Zheng C F,Sun Z H,Shi J Y,Yu J Q,Qi Z Y,Shi K.Induction of systemic resistance in tomato against Botrytis cinerea by N -decanoyl-homoserine lactone via jasmonic acid signaling[J]. Planta,2018, 247(5):1217-1227.doi:10.1007/s00425-018-2860-7. [30] Liu F, Zhao Q, Jia Z H, Song C, Huang Y L, Ma H, Song S S. N -3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana[J]. BMC Plant Biology,2020,20:38.doi:10.1186/s12870-019-2228-6. [31] Birkennbihl R P, Diezel C, Somssich I E. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiol,2012,159(1):266-285.doi:10.1104/pp.111.192641. [32] Zabala M D T, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R,Yang R,Truman W,Tang S J, Smirnoff N,Grant M.Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection[J]. New Phytol,2016,209(3):1120-1134.doi:10.1111/nph.13683. [33] Zhu Z Q, An F Y, Feng Y, Li P P, Xue L, A M, Jiang Z Q, Kim J M, To T K, Li W, Zhang X Y, Yu Q, Dong Z,Chen W Q, Seki M, Zhou J M, Guo H W. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci,2011,108(30):12539-12544. doi:10.1073/pnas.1103959108. [34] Zhang S, Li X, Sun Z H, Sun S J, Hu L F,Ye M, Zhou Y H, Xia X J, Yu J Q, Shi K.Antagonism between phytohormone signaling underlies the variation in disease susceptibility of tomato plants under elevated CO2[J]. Journal of Experimental Botany,2015,66(7):1951-1963.doi:10.1093/jxb/eru538. [35] Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel F M, Dewdney J.Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid,ethylene,or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3[J]. Plant Physiol,2007,144(1):367-379.doi:10.1104/pp.107.095596. [36] Rowe H C, Walley J W, Corwin J, Chan E K F, Dehesh K, Kliebenstein D J.Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis[J]. PLoS Pathog,2010,6(4):e1000861.doi:10.1371/journal.ppat.1000861. [37] Rehman S,Aziz E,Akhtar W,Ilyas M,Mahmood T.Structural and functional characteristics of plant protecinase inhibitor-Ⅱ(PI-Ⅱ)familiy[J]. Biotechnol Lett,2017,39(5):647-666.doi:10.1007/s10529-017-2298-1. |