[1] Walters S A,Wehner T C,Daykin M E,Barker K R. Penetration rates of root-knot nematodes into Cucumis sativus and C. metuliferus roots and subsequent histological changes[J]. Nematropica,2006,36(2):231-242. [2] Ye D Y,Qian C T, Kurowski C. Identification of a novel source of resistance to the root-knot nematode Meloidogyne incognita in Cucumis[J]. Russian Journal of Nematology,2012,20(1):45-51. [3] Thomas E,Somssich I E. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology,2007,10(4):366-371.doi:10.1016/j.pbi.2007.04.020. [4] van Verk M C,Bol J F,Linthorst H J M. WRKY transcription factors involved in activation of SA biosynthesis genes[J]. BMC Plant Biology,2011,11(1):89.doi:10.118611471-2220-11-89. [5] Li R J,Rashotte A M,Singh N K,Weaver D B,Lawrence K S,Locy R D. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes:a perspective[J]. Plant Cell Reports,2015,34(1):5-22. doi:10.1007/s00299-014-1676-6. [6] 叶德友,漆永红,李敏权. 植物与线虫互作的信号传导及调控机制研究进展[J]. 草业学报,2016,25(10):191-201. doi:10.11686/cyxb2015574. Ye D Y,Qi Y H,Li M Q. Research progress on signal transduction and regulation mechanism in plant-nematode interactions[J]. Acta Prataculturae Sinica,2016,25(10):191-201. [7] Ling J,Jiang W J,Zhang Y,Yu H J,Mao Z C,Gu X F,Huang S W, Xie B Y. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics,2011,12:471.doi:10.1186/1471-2164-12-471. [8] 张雅涵. 黄瓜根结线虫取食位点早期形成相关WRKY基因的分离与分析[D]. 北京:中国农业科学院,2011. doi:10.7666/d.Y1932718. Zhang Y H. Isolation and characterization of cucumber WRKY genes during the early stage of nematode feed sites[D]. Beijing:Chinese Academy of Agricultural Sciences,2011. [9] Wen Y Q. Genetic diversity among Cucumis metuliferus populations revealed by cucumber microsatellites[J]. Hortscience,2010,45(2):214-219. doi:10.21273/hortsci.45.2.214. [10] 马金慧,茆振川,李惠霞,谢丙炎. 刺角瓜对南方根结线虫的抗性及特征分析[J]. 园艺学报,2014,41(1):73-79. doi:10.3969/j.issn.0513-353X.2014.01.009. Ma J H,Mao Z C,Li H X,Xie B Y. Resistance identification of Cucumis metuliferus to Meloidogyne incognita and characteristic analysis[J]. Acta Horticulturae Sinica,2014,41(1):73-79. [11] 魏偲,史倩倩,马玉琴,马金慧,茆振川,凌键,杨宇红,谢丙炎. 不同温度下刺角瓜过氧化物酶基因的表达及其对抗南方根结线虫作用的影响[J]. 园艺学报,2016,43(8):1537-1544. doi:10.16420/j.issn.0513-353x.2016-0233. Wei S,Shi Q Q,Ma Y Q,Ma J H,Mao Z C,Ling J,Yang Y H,Xie B Y. Effects of peroxidase gene to the resistance of Cucumis metuliferus against Meloidogyne incognita in different temperature[J]. Acta Horticulturae Sinica,2016,43(8):1537-1544. [12] Ye D Y,Qi Y H,Cao S F,Wei B Q,Zhang H S. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus[J]. Journal of Plant Physiology,2017,212:115-124.doi:10.1016/j.jplph.2017.02.002. [13] Eulgem T,Rushton P J,Robatzek S,Somssich I E. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.doi:10.1016/s1360-1385(00)01600-9. [14] 叶德友,钱春桃,陈劲枫. 抗南方根结线虫黄瓜-酸黄瓜渐渗系的筛选及鉴定[J]. 园艺学报,2011,38(12):2281-2288. Ye D Y,Qian C T,Chen J F. Screening and identification of cucumber-sour cucumber introgression lines resistant to the root-knot nematode Meloidogyne incognita[J]. Acta Horticulturae Sinica,2011,38(12):2281-2288. [15] Wang X,Cheng C Y,Zhang K J,Tian Z,Xu J,Yang S Q,Lou Q F,Li J, Chen J F. Comparative transcriptomics reveals suppressed expression of genes related to auxin and the cell cycle contributes to the resistance of cucumber against Meloidogyne incognita[J]. BMC Genomics,2018,19:583.doi:10.1186/s12864-018-4979-0. [16] Molinari S,Fanelli E,Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes[J]. Molecular Plant Pathology,2014,15(3):255-264.doi:10.1111/mpp.12085. [17] 刘雪娇. 黄瓜/酸黄瓜渐渗系抗南方根结线虫病相关抗性机制及QTLs 定位研究[D]. 江苏:南京农业大学,2014. Liu X J. Relative resistant mechanism research and QTL mapping of Meloidogyne incognita resistance in Cucumis sativus-hystrix introgression line[D]. Jiangsu:Nanjing Agricultural University,2014. [18] Menzel T R, Weldegergis B T, David A, Boland W, Gols R, van Loon J J, Dicke M. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants:transcription of a monoterpene synthase gene and volatile emission[J]. Journal of Experimental Botany,2014,65(17):4821-4831. doi:10.1093/jxb/eru242. [19] Thaler J S,Humphrey P T,Whiteman N K. Evolution of jasmonate and salicylate signal crosstalk[J]. Trends in Plant Science,2012,17(5):260-270.doi:10.1016/j.tplants.2012.02.010. [20] Kazan K,Lyons R. Intervention of phytohormone pathways by pathogen effectors[J]. The Plant Cell, 2014,26(6):2285-2309.doi:10.1105/tpc.114.125419. [21] Grunewald W,Karimi M,Wieczorek K,Van de Cappelle E,Wischnitzki E,Grundler F,Inzé D,Beeckman T,Gheysen G. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes[J]. Plant Physiology,2008,148(1):358-368.doi:10.1104/pp.108.119131. [22] Bhattarai K K,Atamian H S,Kaloshian I,Eulgem T. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J]. The Plant Journal,2010,63(2):229-240.doi:10.1111/j.1365-313x.2010.04232.x. [23] Atamian H S,Eulgem T,Kaloshian I. SlWRKY70 is required for Mi-1 -mediated resistance to aphids and nematodes in tomato[J]. Planta,2012,235(2):299-309.doi:10.1007/s00425-011-1509-6. [24] Ali M A,Wieczorek K,Kreil D P,Bohlmann H. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots[J]. PLoS One,2014,9(7):e102360. doi:10.1371/journal.pone.0102360. [25] Li J,Brader G,Palva E T. The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylatemediated signals in plant defense[J]. The Plant Cell,2004,16(2):319-331. doi:10.1105/tpc.016980. |