[1] 肖焱波, 段宗颜, 金航, 胡万里, 陈拾华, 魏朝富. 小麦/蚕豆间作体系中的氮节约效应及产量优势[J]. 植物营养与肥料学报, 2007, 13(2):267-271. doi:10.3321/j.issn:1008-505X.2007.02.014. Xiao Y B,Duan Z Y, Jin H, Hu W L,Chen S H, Wei C F. Spared N response and yields advantage of intercropped wheat and fababean[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(2):267-271. [2] Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. PNAS, 2007, 104(27):11192-11196. doi:10.1073/pnas.0704591104. [3] Agegnehu G, Ghizaw A, Sinebo W. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping[J]. Agronomy for Sustainable Development, 2008, 28(2):257-263. doi:10.1051/agro:2008012. [4] Kermah M, Franke A C, Adjei-Nsiah S,Ahiabor B D K,Abaidoo R C,Giller K E.Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of Northern Ghana[J]. Field Crops Research, 2017, 213:38-50.doi:10.1016/j.fcr.2017.07.008. [5] Pypers P, Sanginga J M, Kasereka B, Walangululu M, Vanlauwe B. Increased productivity through integrated soil fertility management in cassava-legume intercropping systems in the highlands of Sud-Kivu, DR Congo[J]. Field Crops Research, 2011, 120(1):76-85. doi:10.1016/j.fcr.2010.09.004. [6] 覃潇敏, 郑毅, 汤利, 龙光强. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J]. 作物学报, 2015,41(6):919-928. doi:10.3724/SP.J.1006.2015.00919. Qin X M, Zheng Y, Tang L, Long G Q. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity[J]. Acta Agronomica Sinica, 2015, 41(6):919-928. [7] 董艳, 董坤, 汤利, 郑毅, 杨智仙, 肖靖秀, 赵平, 胡国彬.小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系[J]. 生态学报, 2013,33(23):7445-7454. doi:10.5846/stxb201208281214. Dong Y, Dong K, Tang L, Zheng Y, Yang Z X, Xiao J X, Zhao P, Hu G B. Relationship between rhizosphere microbial community functional diversity and faba bean fusarium wilt occurrence in wheat and faba bean intercropping system[J]. Acta Ecologica Sinica, 2013, 33(23):7445-7454. [8] 宋亚娜, Marschner Petre, 张福锁, 包兴国, 李隆. 小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J]. 生态学报, 2006, 26(7):2268-2274. doi:10.3321/j.issn:1000-0933.2006.07.028. Song Y N, Petre M, Zhang F S, Bao X G, Li L. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.)[J]. Acta Ecologica Sinica, 2006, 26(7):2268-2274. [9] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016,24(4):403-415. doi:10.13930/j.cnki.cjea.160061. Li L. Intercropping enhances agroecosystem services and functioning:Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016,24(4):403-415. [10] Fustec J, Lesuffleur F, Mahieu S, Cliquet J B. Nitrogen rhizodeposition of legumes[J]. Agronomy for Sustainable Development, 2010, 30(1):57-66.doi:10.1007/978-94-007-0394-0_38. [11] Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797):718-722. doi:10.1038/35021046. [12] Boudreau M A.Diseases in intercropping systems[J]. Annual Review of Phytopathology, 2013, 51(1):499-519. doi:10.1146/annurev-phyto-082712-102246. [13] Lopes T, Hatt S, Xu Q X, Chen J L, Liu Y, Francis F. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control[J]. Pest Management Science, 2016, 72(12):2193-2202. doi:10.1002/ps.4332. [14] Manevski K, Børgesen C D, Andersen M N, Kristensen I S. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe:a combined field and modeling study[J]. Plant and Soil, 2015, 388(1-2):67-85. doi:10.1007/s11104-014-2311-6. [15] Giller K E, Ormesher J, Awah F M. Nitrogen transfer from Phaseolus bean to intercropped maize measured using 15N-enrichment and 15N-isotope dilution methods[J]. Soil Biology and Biochemistry, 1991, 23(4):339-346.doi:10.1016/0038-0717(91)90189-Q. [16] Hauggaard-Nielsen H, Ambus P, Jensen E S. Interspecific competition, N use and interference with weeds in pea-barley intercropping[J]. Field Crops Research, 2001, 70(2):101-109. doi:10.1016/s0378-4290(01)00126-5. [17] Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Van Der Werf W. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology, 2015, 21(4):1715-1726. doi:10.1111/gcb.12738. [18] Bedoussac L, Journet E P, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen E S, Prieur L, Justes E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. a review[J]. Agronomy for Sustainable Development, 2015, 35(3):911-935. doi:10.1007/s13593-014-0277-7. [19] Chapagain T, Riseman A.Barley-pea intercropping:effects on land productivity, carbon and nitrogen transformations[J]. Field Crops Research, 2014, 166(9):18-25. doi:10.1016/j.fcr.2014.06.014. [20] 刘宇, 章莹, 杨文亭, 李志贤, 管奥湄, 王建武. 减量施氮与大豆间作对蔗田氮平衡的影响[J]. 应用生态学报, 2015, 26(3):817-825. doi:10.13287/j.1001-9332.20150106.002. Liu Y, Zhang Y, Yang W T, Li Z X, Guan A M, Wang J W. Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field[J]. Chinese Journal of Applied Ecology, 2015, 26(3):817-825. [21] 冯晓敏, 杨永, 臧华栋, 钱欣, 胡跃高, 宋振伟, 张卫健, 曾昭海. 燕麦花生间作系统作物氮素累积与转移规律[J]. 植物营养与肥料学报, 2018, 24(3):617-624. doi:10.11674/zwyf.17226. Feng X M, Yang Y, Zang H D, Qian X, Hu Y G, Song Z W, Zhang W J, Zeng Z H. Characteristics of crop nitrogen accumulation and nitrogen transfer in oat and peanut intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3):617-624. [22] 赵财,柴强, 乔寅英, 王建康. 禾豆间距对间作豌豆"氮阻遏"减缓效应的影响[J]. 中国生态农业学报, 2016, 24(9):1169-1176. doi:10.13930/j.cnki.cjea.160289. Zhao C, Chai Q, Qiao Y Y, Wang J K. Effect of cereal-legume spacing in intercropping system on alleviating "N inhibition" in pea plants[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9):1169-1176. [23] 贾曼曼, 肖靖秀, 汤利, 郑毅. 不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响[J]. 云南农业大学学报(自然科学), 2017,32(2):350-357. doi:10.16211/j.issn.1004-390X(n).2017.02.022. Jia M M, Xiao J X, Tang L, Zheng Y. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping[J]. Journal of Yunnan Agricultural University, 2017,32(2):350-357. [24] 肖靖秀, 周桂夙, 汤利, 郑毅, 李永梅, 李隆. 小麦/蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J]. 植物营养与肥料学报, 2006,12(4):517-522. doi:10.3321/j.issn:1008-505X.2006.04.010. Xiao J X, Zhou G S, Tang L, Zheng Y, Li Y M, Li L. Effects of nitrogen and potassium nutrition on the occurence of Blumeria graminis (DC).Speer of wheat in wheat and faba bean intercropping[J]. Journal of Plant Nutrition and Fertilizers, 2006,12(4):517-522. [25] Trinder C, Brooker R, Davidson H, Robinson D. Dynamic trajectories of growth and nitrogen capture by competing plants[J]. New Phytologist, 2012, 193(4):948-958. doi:10.1111/j.1469-8137.2011.04020.x. [26] Zhang W P, Liu G C, Sun J H, Zhang L Z, Weiner J, Li L. Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping[J]. Plant and Soil, 2015, 397(1-2):227-238. doi:10.1007/s11104-015-2619-x. [27] Damgaard C, Weiner J, Nagashima H. Modelling individual growth and competition in plant populations:growth curves of Chenopodium album at two densities[J]. Journal of Ecology, 2002, 90(4):666-671.doi:10.1046/j.1365-2745.2002.00700.x. [28] Willey R W. Resource use in intercropping systems[J]. Agricultural Water Management, 1990, 17(1-3):215-231.doi:10.1016/0378-3774(90)90069-B. [29] 肖靖秀, 汤利, 郑毅, 董艳. 大麦/蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响[J]. 麦类作物学报, 2011, 31(3):499-503.doi:10.7606/j.issn.1009-1041.2011.03.020. Xiao J X, Tang L, Zheng Y, Dong Y. Effects of N level on yield of crops,N absorption and accumulation of barley in barley and faba bean intercropping system[J]. Journal of Triticeae Crops, 2011, 31(3):499-503. [30] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping:I. yield advantage and interspecific interactions on nutrients[J]. Field Crops Research, 2001, 71(2):123-137.doi:10.1016/s0378-4290(01)00156-3. [31] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil, 2003, 248(1-2):305-312.doi:10.1023/a:1022352229863. [32] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques[J]. Plant and Soil, 2004, 262(1-2):45-54.doi:10.1023/b:plso.0000037019.34719.0d. [33] 柏文恋, 张梦瑶, 任家兵, 汤利, 郑毅, 肖靖秀. 小麦/蚕豆间作作物生长曲线的模拟及种间互作分析[J]. 应用生态学报, 2018, 29(12):4037-4046. doi:10.13287/j.1001-9332.201812.026. Bai W L, Zhang M Y, Ren J B, Tang L, Zheng Y,Xiao J X. Simulation of crop growth curve and analysis of interspecific interaction in wheat and faba bean intercropping system[J]. Chinese Journal of Applied Ecology, 2018, 29(12):4037-4046. [34] 李春杰. 种内/种间互作调控小麦/蚕豆间作体系作物生长与氮磷吸收的机制[D].北京:中国农业大学,2018. Li C J. The mechanisms of intra and specific interspecific interaction on regulating growth and N/P acquisition by intercropped wheat and fababean[D]. Beijing:China Agricultural University, 2018. [35] 肖靖秀, 郑毅, 汤利,王戈, 董艳. 间作小麦蚕豆不同生长期根际有机酸和酚酸变化[J]. 土壤学报, 2016, 53(3):685-693.doi:10.11766/trxb201508180222. Xiao J X,Zheng Y,Tang L,Wang G,Dong Y. Changes in organic and phenolic acids in rhizosphere of interplanted wheat and faba bean with growth stage[J]. Acta Pedologica Sinica, 2016, 53(3):686-693. [36] Liu Y C, Qin X M, Xiao J X, Tang L, Wei C Z, Wei J J, Zheng Y.Intercropping influences component and content change of flavonoids in root exudates and nodulation of Faba bean[J]. Journal of Plant Interactions, 2017, 12(1):187-192.doi:10.1080/17429145.2017.1308569. [37] Li B, Li Y Y, Wu H M, Zhang F F, Li C J,Li X X,Lambers H,Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences, 2016, 113(23):6496-6501. doi:10.1073/pnas.1523580113. [38] 王宇蕴.不同抗性小麦与蚕豆间作对小麦根际速效养分和根际形态的影响[D].昆明:云南农业大学,2010. Wang Y Y. Effects of wheat cultivars with different disease resistance and fababean intercropping on rhizosphere on the available nutrient and root morphology of wheat[D]. Kunming:Yunnan Agricultural University, 2010. [39] Katerji N, Mastrorilli M, van Hoorn J W, Lahmer F Z, Hamdy A, Oweis T. Durum wheat and barley productivity in saline-drought environments[J]. European Journal of Agronomy, 2009, 31(1):1-9.doi:10.1016/j.eja.2009.01.003. [40] 代立芹,李春强, 魏瑞江, 姚树然, 郭淑静. 河北省冬小麦生长和产量对气候变化的响应[J]. 干旱区研究, 2011, 28(2):294-300.doi:10.13866/j.azr.2011.02.007. Dai L Q, Li C Q, Wei R J, Yao S R, Guo S J. Response of growth and yield of winter wheat to climate change in Hebei Province[J]. Arid Zone Research, 2011, 28(2):294-300. [41] 成林, 李彤霄, 刘荣花. 主要生育期气候变化对河南省冬小麦生长及产量的影响[J]. 中国生态农业学报, 2017, 25(6):931-940.doi:10.13930/j.cnki.cjea.161054. Cheng L, Li T X, Liu R H. Effect of climate change on growth and yield of winter wheat in Henan Province[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6):931-940. |