[1] Sahi C,Singh A,Kumar K,et al.Salt stress response in rice:genetics,molecular biology,and comparative genomics[J].Functional&Integrative Genomics,2006,6(4):263-284.
[2] Tambo J A,Abdoulaye T.Climate change and agricultural technology adoption:the case of drought tolerant maize in rural Nigeria[J].Mitigation and Adaptation Strategies for Global Change,2012,17(3):277-292.
[3] Bartel D P.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
[4] Bartel D P.MicroRNAs:target recognition and regulatory functions[J].Cell,2009,136(2):215-233.
[5] Achkar N P,Cambiagno D A,Manavella P A.miRNA biogenesis:a dynamic pathway[J].Trends in Plant Science,2016,21(12):1034-1044.
[6] Jones-Rhoades M W,Bartel D P,Bartel B.MicroRNAs and their regulatory roles in plants[J].Annual Review of Plant Biology,2006,57(1):19-53.
[7] Liu H H,Tian X,Li Y J,et al.Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J].RNA,2008,14(5):836-843.
[8] Ding D,Zhang L,Wang H,et al.Differential expression of miRNAs in response to salt stress in maize roots[J].Annals of Botany,2009,103(1):29-38.
[9] Fan G,Wang L,Dong Y,et al.Genome of paulownia (Paulownia fortunei) illuminates the related transcripts,miRNA and proteins for salt resistance[J].Scientific Reports,2017,7(1):1285.
[10] Mondal T K,Ganie S A.Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa)[J].Gene,2014,535(2):204-209.
[11] Ren Y,Chen L,Zhang Y,et al.Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing[J].Biochimie,2013,95(4):743-750.
[12] Wang Y G,An M,Zhou S F,et al.Expression profile of maize microRNAs corresponding to their target genes under drought stress[J].Biochemical Genetics,2014,52(11/12):474-493.
[13] Yang J,Zhang N,Mi X,et al.Identification of miR159s and their target genes and expression analysis under drought stress in potato[J].Computational Biology and Chemistry,2014,53:204-213.
[14] Ni Z,Hu Z,Jiang Q,et al.GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress[J].Plant Molecular Biology,2013,82(1/2):113-129.
[15] 艾佳,李永光,王涛,等.植物逆境microRNA的研究进展[J].基因组学与应用生物学,2014(5):1154-1160.
[16] 马风勇,朱永兴,石晓霞,等.植物miRNA抗逆性研究进展[J].西北农林科技大学学报:自然科学版,2012(5):217-223.
[17] 王维,张玉娟,陈洁,等.植物逆境胁迫相关miRNA研究进展[J].生物技术通报,2015(1):1-10.
[18] 许振华,谢传晓.植物microRNA与逆境响应研究进展[J].遗传,2010,32(10):1018-1030.
[19] Jian X,Zhang L,Li G,et al.Identification of novel stress-regulated microRNAs from Oryza sativa L.[J].Genomics,2010,95(1):47-55.
[20] Wei L Y,Zhang D F,Xiang F,et al.Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedings[J].International Journal of Plant Sciences,2009,170(8):979-989.
[21] Huang S Q,Xiang A L,Che L L,et al.A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress[J].Plant Biotechnology Journal,2010,8(8):887-899.
[22] Jiao Y,Wang Y,Xue D,et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature Genetics,2010,42(6):541-544.
[23] Raman S,Greb T,Peaucelle A,et al.Interplay of miR164,CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J].Plant Journal,2008,55(1):65-76.
[24] Xiong G L,Xie K,Hou X.MIR164 gene that controls plant root system development and fertility and use thereof[M].USA:Google Patents,2010.
[25] Liu H,Jia S,Shen D,et al.Four AUXIN RESPONSE FACTORs down-regulated by microRNA167 are associated with growth and development in Oryza sativa[J].Functional Plant Biology,2012,39(9):736-744.
[26] Zhao B,Ge L,Liang R,et al.Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J].BMC Molecular Biology,2009,10:29.
[27] Zhang X,Zou Z,Gong P,et al.Over-expression of microRNA169 confers enhanced drought tolerance to tomato[J].Biotechnology Letters,2011,33(2):403-409.
[28] Hwang E W,Shin S J,Yu B K,et al.miR171 family members are involved in drought response in Solanum tuberosum[J].Journal of Plant Biology,2011,54(1):43-48.
[29] Lu Y Z,Feng Z,Bian L Y,et al.miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression[J].Functional Plant Biology,2011,38(1):44-53.
[30] Xia K,Ou X,Tang H,et al.Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress[J].The New Phytologist,2015,208(3):790-802.
[31] Yang C,Li D,Mao D,et al.Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.)[J].Plant,Cell&Environment,2013,36(12):2207-2218.
[32] Schommer C,Bresso E G,Spinelli S V,et al.Role of microRNA miR319 in plant development[J].Signaling&Communication in Plants,2012,15:29-47.
[33] Wu J,Yang R,Yang Z,et al.ROS accumulation and antiviral defence control by microRNA528 in rice[J].Nature Plants,2017,3(1):16203.
[34] Wang L,Sun S,Jin J,et al.Coordinated regulation of vegetative and reproductive branching in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(50):15504-15509.
[35] Meng Y,Chen D,Ma X,et al.Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr[J].Plant Signaling&Behavior,2010,5(3):252-254. |