[1] Werker E. Trichome diversity and development[J]. Advances in Botanical Research, 2000,31:1-35. doi:10.1016/S0065-2296(00)31005-9. [2] Payne C T, Zhang F, Lloyd A M. GL3 Encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics, 2000, 156(3):1349-1362. [3] Larkin J C, Brown M L, Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis[J]. Annual Reviews of Plant Biology, 2003, 54:403-430. doi:10.1146/annurev.arplant.54.031902.134823. [4] Pierce L K, Wehner T C. Review of genes and linkage groups in cucumber[J]. Hort Science, 1990, 25(6):605-615. [5] Yang C X, Li H X, Zhang J H, Luo Z D, Gong P J, Zhang C J, Li J H, Wang T T, Zhang Y Y, Lu Y E, Ye Z B.A regulatory gene induces trichome formation and embryo lethality in tomato[J]. Proceedings of the National Academy of Sciences, 2011, 108(29):11836-11841. doi:10.1073/pnas.1100532108. [6] Kang J H, Liu G G, Shi F, Jones A D, Beaudry R M, Howe G A. The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores[J]. Plant Physiology, 2010, 154(1):262-272. doi:10.1104/pp.110.160192. [7] Kang J H, Shi F, Jones A D, Marks M D, Howe G A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry[J]. Journal of Experimental Botany 2010, 61(4):1053-1064. doi:10.1093/jxb/erp370. [8] Guo S G, Sun H H, Zhang H Y, Liu J G, Ren Y, Gong G Y, Jiao C, Zheng Y, Yang W C, Fei Z J, Xu Y. Comparative transcriptome analysis of cultivated and wild watermelon during fruit development[J]. PLoS One, 2015, 10(6):e0130267. doi:10.1371/journal.pone.0130267. [9] Zhang H, Feng J, Hwang S F, Strelkov S E, Falak I, Huang X, Sun R. Mapping of clubroot(Plasmodiophora brassicae)resistance in canola(Brassica napes)[J]. Plant Pathology, 2016, 65(3):435-440. doi:10.1111/ppa.12422. [10] Wang A H, Hu J H, Huang X X, Li X, Zhou G L, Yan Z X. Comparative transcriptome analysis reveals Heat-Responsive genes in Chinese cabbage(Brassica rapa ssp. chinensis)[J]. Frontiers in Plant Science, 2016,7:939. doi:10.3389/fpls.2016.00939. [11] 魏明明,陈钰辉,刘富中,张映,连勇. 基于转录组测序的茄子SSR标记开发[J]. 植物遗传资源学报,2016,17(6):1082-1091.doi:10.13430/j.cnki.jpgr.2016.06.017. Wi M M, Chen Y H, Liu F Z, Zhang Y, Lian Y. Evelopment of SSR markers for eggplant with transcriptome[J]. Sequencing Data Journal of Plant Genetic Resources, 2016,17(6):1082-1091. [12] 李笑. 水茄抗黄萎病相关StWRKY-1 基因的克隆与功能分析[D]. 扬州:扬州大学,2018. L X. Cloning and functional analysis of the StWRKY-1 gene from Solanum torvum[D]. Yangzhou:Yangzhou University, 2018. [13] 王世界.茄子花青素生物合成关键MYB转录因子的筛选及克隆[D].泰安:山东农业大学,2016. Wng S J. Screening and cloniing of key MYB transcription factor of athncyanin biosynthesis in eggplant(Solanum melongena L.)[D]. Taian:Shandong Agricultural University, 2016. [14] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515. doi:10.1038/nbt.1621. [15] Leng N, Dawson J A, Thomson J A, Ruotti V, Rissman A I, Smits B M G, Haag J D, Gould M N, Stewart R M, Kendziorski C. EBSeq:An empirical Bayes hierarchical model for inference in RNA-seq experiments[J]. Bioinformatics, 2013, 29(8):1035-1043. doi:10.1093/bioinformatics/btt087. [16] Ye J, Fang L, Zheng H K, Zhang Y, Chen J, Zhang Z J, Wang J, Li S T, Li R Q, Bolund L, Wang J.WEGO:A web tool for plotting GO annotations[J]. Nucleic Acids Research,2006,34(1):293-297. doi:10.1093/nar/gkl031. [17] 李锡香,朱德蔚. 茄子种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2006:5-6. L X X, Zhu W D. Description criterion and data standard for eggplant[M]. Beijing:China Agriculture Press, 2006:5-6. [18] Sakakibara H. Cytokinins:Activity, biosynthesis, and translocation[J]. Aanual Review of Plant Biology,2006,57:431-449. doi:10.1146/annurev.arplant.57.032905.105231. [19] Kowalska M, Galuszka P, Frébortová J, Šebela M, Bě-res T, Hluska T, Smehilova M, Bilyeu K D, Frěbort I. Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties[J]. Phytochemistry,2010,71(17-18):1970-1978. doi:10.1016/j.phytochem.2010.08.013. [20] Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. Cytokinin-deficieat transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinias in the regulation of shoot and root meristem activity[J]. Plant Cell, 2003,15(11):2532-2550. doi:10.1105/tpc.014928. [21] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J].Science, 2005, 309(5735):741-745. doi:10.1126/science.1113373. [22] Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, Frébort I. Cytokinin oxidase/dehydrogenase genes in barley and wheat:cloning and heterologous expression[J]. European Journal of Biochemistry, 2004, 271(20):3990-4002. doi:10.1111/j.1432-1033.2004.04334.x. [23] Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y M I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species[J]. Journal of Plant Research, 2003,116(3):241-252. doi:10.1007/s10265-003-0096-4. [24] Werner T, Köllmer I, Bartrina I, Holst K, Schmüllin T. New insights into the biology of cytokinin degradation[J]. Plant Biology, 2006,8(3):371-381. doi:10.1055/s-2006-923928. [25] Vyroubalová Š,Václavíková K,Ture ková V,Novák O,Šmehilová M,Hluska T, Ohnoutková L,Frébort I, Galuszka P. Characterization of new maize genes putatively involved in CK metabolism and their expression during osmotic stress in relation with cytokinin levels[J]. Plant Physiology, 2009, 151(1):433-447. doi:10.1104/pp.109.142489. [26] Sengupta S, Mukherjee S, Basak P, Majumder A L. Significance of galactinol and raffinose family oligosaccharide synthesis in plants[J]. Frontiers in Plant Science,2015,6:656. doi:10.3389/fpls.2015.00656. [27] Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. Plant Journal, 2002, 29(4):417-426. doi:10.1046/j.0960-7412.2001.01227.x. [28] Pharr D M, Huber S C, Sox H N. Leaf carbohydrate status and enzymes of translocate synthesis in fruiting and vegetative plant of Cucunais sativus L.[J]. Plant Physiolology, 1985,77(1):104-108. doi:10.2307/4269086. [29] Peterbauer T, Mach L, Mucha J, Richter A. Functional expression of a cDNA encoding pea(Pisum sativum L.)raffinose synthase, partial purification of the enzyme from seeds, and steady-state kinetic analysis of raffinose synthesis[J]. Planta, 2002, 215(5):839-846. doi:10.1007/s00425-002-0804-7. [30] Voitsekhovskaja O V, Rudashevskaya E L, Demchenko K N, Pakhomova M V, Batashev D R, Gamalei Y V, Lohaus G, Pawlowski K. Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alonsoa meridionalis[J]. Journal of Experimental Botany,2009,60(6):1873-1883. doi:10.1093/jxb/erp074. [31] Buschhaus C, Jetter R. Composition differences between epicuticular and intracuticular wax substructures:how do plants seal their epidermal surfaces?[J]. Journal of Experimental Botany,2010,62(3):841-853. doi:10.1093/jxb/erq366. [32] Lee S B, Suh M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015,34(4):557-572. doi:10.1007/s00299-015-1772-2. [33] Kunst L. New insights into biosynthesis of cuticular wax[J]. The FASEB Journal, 2015, 29(1):363-366. [34] Mohammadian M A, Wading J R, Hill R S. The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigeruw (Proteaceae)[J]. Acta Oecologica, 2007,31(1):93-101. doi:10.1016/j.actao.2006.10.005. [35] Gniwotta F, Vogg G, Gartmann V, Carver T L, Riederer M, Jetter R. What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes[J]. Plant Physiology, 2005,139(1):519-530. doi:10.1104/pp.104.053579. [36] Gaume L, Perret P, Gorb E, Gorb S, Labat J J, Rowe N. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants[J]. Arthropod Structure & Development, 2004,33(1):103-111. doi:10.1016/j.asd.2003.11.005. [37] Cui W, Liang Y, Tian W X, Ji M J, Ma X F. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis[J]. Biochim Biophys Acta, 2016,1861(3):149-155. doi:10.1016/j.bbalip.2015.12.002. [38] Dusty P B. Biochemistry and molecular biology of wax production by plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996,47:405-430. doi:10.1146/annurev.arplant.47.1.405. [39] Kolattukudy P E. Enzymatic synthesis of fatty alcohols in Brassica oleracea[J]. Archives of Biochemistry & Biophysics,1971, 142(2):701-709. doi:10.1016/0003-9861(71)90536-4. [40] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax[J]. Progress in Lipid Research, 2003, 42(1):51-80. doi:10.1016/S0163-7827(02)00045-0. |