[1] Symons G M, Chua Y J, Ross J J, Quittenden L J, Davies N W, Reid J B. Hormonal changes during non-climacteric ripening in strawberry[J]. Journal of Experimental Botany, 2012, 63(13):4741-4750. doi:10.1093/jxb/ers147. [2] 张运涛, 王桂霞, 董静,王萍. 草莓畸形果形成的原因分析[J]. 落叶果树, 2004, 36(6):10-13. doi:10.3969/j.issn.1002-2910.2004.06.004. Zang Y T, Wang G Y, Dong J, Wang P. Reasons for occurrence of deformed berries in strawberry[J]. Deciduous Fruits, 2004, 36(6):10-13. [3] 程然, 生吉萍. 草莓果实成熟衰老影响因子及其调控机制研究进展[J]. 食品科学, 2015, 36(9):242-247. doi:10.7506/spkx1002-6630-201509045. Ceng R, Sheng J P. Recent progress in research on influencing factors and regulation mechanisms of strawberry fruit ripening and senescence[J]. Food Science, 2015, 36(9):242-247. [4] Ma Q, Grones P, Robert S. Auxin signaling:a big question to be addressed by small molecules[J]. Journal of Experimental Botany, 2018, 69(2):313-328. doi:10.1093/jxb/erx375. [5] Leyser O. Auxin signaling[J]. Plant Physiology, 2018, 176(1):465-479. doi:10.1104/pp.17.00765. [6] Roosjen M, Paque S, Weijers D. Auxin response factors:output control in auxin biology[J]. Journal of Experimental Botany,2018,69(2):179-188. doi:10.1093/jxb/erx237. [7] Luo J, Zhou J J, Zhang J Z. Aux/IAA gene family in plants:molecular structure, regulation, and function[J]. International Journal of Molecular Sciences, 2018, 19(1):259. doi:10.3390/ijms19010259. [8] Xie R J, Pang S P, Ma Y Y, Deng L, He S L, Yi S L, Lü Q, Zheng Y Q. The ARF, AUX/IAA, and GH3, gene families in citrus:genome-wide identification and expression analysis during fruitlet drop from abscission zone A[J]. Molecular Genetics and Genomics, 2015, 290(6):2089-2105. doi:10.1007/s00438-015-1063-1. [9] Filiz E, Koc I. Genome-wide identification and comparative analysis of EPSPS(aroA)genes in different plant species[J]. Journal of Plant Biochemistry and Biotechnology, 2016, 25(1):21-29. doi:10.1007/s13562-015-0303-0. [10] Liu M C, Chen Y, Chen Y, Shin J H, Mila I, Audran C, Zouine M, Pirrello J, Bouzayen M. The tomato ethylene response factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27[J]. New Phytologist, 2018,219(2):631-640. doi:10.1111/nph.15165. [11] Calderón Villalobos L I A, Lee S, De O C, Ivetac A, Brandt W, Armitage L, Sheard L B, Tan X, Parry G, Mao H B, Zheng N, Napier R, Kepinski S, Estelle M. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J]. Nature Chemical Biology, 2016, 8(5):477-485. doi:10.1038/nchembio.926. [12] 李俊男, 燕晓杰, 李枢航, 张荣沭. 植物AUX/IAA基因家族研究进展[J]. 中国农学通报, 2018, 34(15):89-92. L J N, Yan X J, Li S H, Zhang R M. Plants AUX/IAA gene family:research progress[J]. Chinese Agricultural Science Bulletin, 2018, 34(15):89-92. [13] Rogg L E, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development[J]. Plant Cell, 2013, 13(3):465-480. doi:10.2307/3871400. [14] Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki M K, Harper R M, Liscum E, Yamamotao K T. MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thalian a[J]. The Plant Cell Online, 2004, 16(2):379-393.doi:10.1105/tpc.018630. [15] Fukaki H, Tameda S, Masuda H, Tasaka M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis[J]. Plant Journal, 2010, 29(2):153-168. doi:10.1046/j.0960-7412.2001.0201.x. [16] Sha L, Li Q Q, Liu S D, Pinos N M, Tian H N, Wang S C. Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis[J]. Frontiers in Plant Science, 2015, 6(295):01156.doi:10.1046/j.0960-7412.2001.01201.X. [17] Chen Y, Yang Q F, Sang S H, Wei Z Y, Wang P. Rice inositol polyphosphate kinase(OsIPK2)directly interacts with OsIAA11 to regulate lateral root formation[J]. Plant & Cell Physiology, 2017, 58(11):1891-1900. doi:10.1093/pcp/pcx125. [18] Kloosterman B, Visser R G F, Bachem C W B. Isolation and characterization of a novel potato auxin/indole-3-acetic acid family member(StIAA2)that is involved in petiole hyponasty and shoot morphogenesis[J]. Plant Physiology & Biochemistry, 2006, 44(11-12):766-775.doi:10.1016/j.plaphy.2006.10.026. [19] Gao J P, Cao X L, Shi S D, Ma Y L, Wang K, Liu S J, Chen D, Chen Q, Ma H L. Genome-wide survey of Aux/IAA, gene family members in potato(Solanum tuberosum):identification, expression analysis, and evaluation of their roles in tuber development[J]. Biochemical and Biophysical Research Communications, 2016, 471(2):320-327. doi:10.1016/j.bbrc.2016.02.013. [20] Singh V K, Jain M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean[J]. Frontiers in Plant Science, 2015, 6:918. doi:10.3389/fpls.2015.00918. [21] Paul P, Dhandapani V, Rameneni J J, Li X N, Sivanandhan G, Choi S R, Pang W X, Im S, Lim Y P. Genome-wide analysis and characterization of Aux/IAA family genes in Brassica rapa[J]. PLoS One, 2016, 11(4):e0151522. doi:10.1371/journal.pone.0151522. [22] Liu K D, Yuan C C, Feng S X, Zhong S T, Li H L, Zhong J D, Shen C J, Liu J X. Genome-wide analysis and characterization of Aux/IAA, family genes related to fruit ripening in papaya(Carica papaya, L.)[J]. Bmc Genomics, 2017, 18(1):351. doi:10.1186/s12864-017-3722-6. [23] Li H, Wang B, Zhang Q, Wang J, King G J, Liu K. Genome-wide analysis of the auxin/indoleacetic acid(Aux/IAA)gene family in allotetraploid rapeseed(Brassica napus L.)[J]. BMC Plant Biology, 2017, 17(1):204. doi:10.1186/s12870-017-1165-5. [24] Salma C, Alain L, Claude P J, Mondher B. Tomato Aux/IAA3 and HOOKLESS are important actors of the interplay between auxin and ethylene during apical hook formation[J]. Plant Signaling & Behavior, 2009, 4(4):559-560. doi:10.4161/Psb.4.6.8748. [25] Wang H, Jones B, Li Z G, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J C, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J]. Plant Cell, 2005, 17(10):2676-2692. doi:10.1105/tpc.105.033415. [26] Bassa C, Mila I, Bouzayen M, Audran-Delalande C. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato[J]. Plant & Cell Physiology, 2012, 53(9):1583-1595. doi:10.1093/pcp/pcs101. [27] Su L Y, Bassa C, Audran C, Mila I, Cheniclet C, Chevalier C, Bouzayen M, Roustan J P, Chervin C. The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J]. Plant & Cell Physiology, 2014, 55(11):1969-1976. doi:10.1093/pcp/pcu124. [28] 苏丽艳. 草莓生长素响应因子FvARF10和FvARF18 基因的克隆及表达分析[J]. 西北植物学报, 2018, 38(7):1203-1211. doi:10.7606/j.issn.1000-4025.2018.07.1203. S L Y. Cloning and characterization of auxin response factor gene FvARF10 and FvARF18 in Fragaria vesca[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(7):1203-1211. [29] Pattison R J, Csukasi F, Catalá C. Mechanisms regulating auxin action during fruit development[J]. Physiologia Plantarum, 2014, 151(1):62-72. doi:10.1111/ppl.12142. [30] Chen J X, Mao L C, Lu W J, Yin T J, Luo Z S. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid[J]. Planta, 2016, 243(1):183-197. doi:10.1007/s00425-015-2402-5. [31] Fortes A M, Teixeira R T, Agudelo-Romero P. Complex interplay of hormonal signals during grape berry ripening[J]. Molecules, 2015, 20(5):9326-9343. doi:10.3390/molecules20059326. [32] 贾海锋, 赵密珍, 王庆莲,房经贵,赵鹏程,刘众杰,张成,纠松涛. 生长素和脱落酸在草莓果实发育过程中的作用[J]. 江苏农业科学, 2016, 44(11):173-176. doi:10.15889/j.issn.1002-1302.2016.11.051. Ja H F, Zhao M Z, Wang Q L, Fang J G, Zhao P C, Liu Z J, Zhang C, Jiu S T. Effects of auxin and abscisic acid on the development of strawberry fruit[J]. Jiangsu Agricultural Sciences, 2016, 44(11):173-176. |