[1] Wang Z,Chen Z,Cheng J,et al.QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.)[J].PloS One,2012,7(12):e51202.
[2] Tian L,Tan L B,Liu F X,et al.Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon[J].Journal of Genetics and Genomics,2011,38(12):593-601.
[3] Ren Z,Chao D.QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J].Theoretical and Applied Genetics,2004,108(2):253-260.
[4] Prasad S,Bagali P,Hittalmani S,et al.Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.)[J].Current Science,2000,78(2):162-164.
[5] Wang Z F,Wang J F,Bao Y M,et al.Quantitative trait loci controlling rice seed germination under salt stress[J].Euphytica,2011,178(3):297-307.
[6] Chai L,Zhang J,Pan X B,et al.Advanced backcross QTL analysis for the whole plant growth duration salt tolerance in rice (Oryza sativa L.)[J].Journal of Integrative Agriculture,2014,13(8):1609-1620.
[7] Sabouri H,Rezai A,Moumeni A,et al.QTLs mapping of physiological traits related to salt tolerance in young rice seedlings[J].Biologia Plantarum,2009,53(4):657-662.
[8] Thomson M J,De Ocampo M,Egdane J A,et al.Characterizing the saltol quantitative trait locus for salinity tolerance in rice[J].Rice,2010,3(2/3):148-160.
[9] Mohammadi R,Mendioro M S,Diaz G Q,et al.Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice(Oryza sativa L.)[J].Journal of Genetics,2013,92(3):433-443.
[10] Ammar M H M,Pandit A,Singh R K,et al.Mapping of QTLs controlling Na+,K+ and Cl- ion concentrations in salt tolerant indica rice variety CSR27[J].Journal of Plant Biochemistry and Biotechnology,2009,18(2):139-150.
[11] Deshmukh R K,Sonah H,Kondawar V,et al.Identification of meta quantitative trait loci for agronomical traits in rice (Oryza sativa)[J].Indian Journal of Genetics and Plant Breeding,2012,72(3):264-270
[12] Arcade A,Labourdette A,Falque M,et al.BioMercator:integrating genetic maps and QTL towards discovery of candidate genes[J].Bioinformatics,2004,20(14):2324-2326.
[13] Zhang J F,Yu J W,Pei W F,et al.Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton[J].BMC Genomics,2015,16(1):577.
[14] Shinozuka H,Cogan N O,Spangenberg G C,et al.Quantitative trait locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.)[J].BMC genetics,2012,13(1):101.
[15] Zhang H,Uddin M S,Zou C,et al.Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize[J].Journal of Integrative Plant Biology,2014,56(3):262-270.
[16] Dong Y B,Zhang Z W,Shi Q L,et al.QTL identification and meta-analysis for kernel composition traits across three generations in popcorn[J].Euphytica,2015,204(3):649-660.
[17] Tyagi S,Mir R,Balyan H,et al.Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.)[J].Euphytica,2015,201(3):367-380.
[18] Swamy B,Sarla N.Meta-analysis of Yield QTLs derived from inter-specific crosses of rice reveals consensus regions and candidate genes[J].Plant Molecular Biology Reporter,2011,29(3):663-680.
[19] Trijatmiko K R,Supriyanta,Prasetiyono J A,et al.Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population[J].Molecular Breeding,2014,34(2):283-295.
[20] Goffinet B,Gerber S.Quantitative trait loci:a meta-analysis[J].Genetics,2000,155(1):463-473.
[21] Ashburner M,Ball C A,Blake J A,et al.Gene ontology:tool for the unification of biology[J].Nature Genetics,2000,25(1):25-29.
[22] Mccouch S R,Teytelman L,Xu Y,et al.Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.)[J]. DNA research,2002,9(6):199-207.
[23] Temnykh S D G.Experimental analysis of microsatellites in rice.(Oryza sativa L.):frequency,length variation,transposon associations,and genetic marker potential[J].Genome Research,2001,11(8):1441-1452.
[24] Septiningsih E M,Prasetiyono J,Lubis E,et al.Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O.rufipogon[J].Theoretical and Applied Genetics,2003,107(8):1419-1432.
[25] Babu R C,Nguyen B D,Chamarerk V,et al.Genetic analysis of drought resistance in rice by molecular markers:Association between secondary traits and field performance[J].Crop Science,2003,43(4):1457-1469.
[26] Cho Y G,McCouch S R,Kuiper M,et al.Integrated map of AFLP,SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.)[J].Theoretical and Applied Genetics,1998,97(3):370-380.
[27] Harushima Y,Yano M,Shomura P,et al.A high-density rice genetic linkage map with 2275 markers using a single F-2 population[J].Genetics,1998,148(1):479-494.
[28] 杨静.利用双向导入系剖析水稻耐盐QTL定位的遗传背景效应[D].哈尔滨:东北农业大学,2009.
[29] 汪斌,兰涛,吴为人.盐胁迫下水稻苗期Na+含量的QTL定位[J].中国水稻科学,2007,21(6):585-590.
[30] 曲英萍.水稻耐盐碱性QTLs分析[M].北京:中国农业科学院,2007.
[31] 钱益亮,王辉,陈满元,等.利用BC2F3产量选择导入系定位水稻耐盐QTL[J].分子植物育种,2009,7(2):224-232.
[32] Lin H X,Zhu M Z,Yano M,et al.QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J].Theoretical and Applied Genetics 2004,108(2):253-260.
[33] Liang J L,Qu Y P,Yang C G,et al.Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress[J].Euphytica,2015,201(3):441-452.
[34] Qi D,Guo G,Lee M C,et al.Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice[J].Journal of Genetics and Genomics,2008,35(5):299-305.
[35] Cheng L R,Wang Y,Meng L J,et al.Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice[J].Genome,2012,55(1):45-55.
[36] Alam R,Sazzadur R M,Seraj Z I,et al.Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L.[J].Plant Breeding,2011,130(4):430-437.
[37] Zheng H L,Zhao H W,Liu H L,et al.QTL analysis of Na+ and K+ concentrations in shoots and roots under NaCl stress based on linkage and association analysis in japonica rice[J].Euphytica,2015,201(1):109-121.
[38] Zou M,Guan Y,Ren H,et al.A bZIP transcription factor,OsABI5,is involved in rice fertility and stress tolerance[J].Plant Molecular Biology,2008,66(6):675-683.
[39] Ying S,Zhang D F,Li H Y,et al.Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J].Plant Cell Reports, 2011,30(9):1683-1699.
[40] Pramanik M,Imai R.Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice[J].Plant Molecular Biology,2005,58(6):751-762.
[41] Matsuda S,Nagasawa H,Yamashiro N A,et al.Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio,resulting in a salt-sensitive phenotype[J].Plant Science,2014,224(9):103-111.
[42] Huang X Y,Chao D Y,Gao J P,et al.A previously unknown zinc finger protein,DST,regulates drought and salt tolerance in rice via stomatal aperture control[J].Genes & Development,2009,23(15):1805-1817.
[43] Li J,Long Y,Qi G N,et al.The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J].The Plant Cell,2014,26(8):3387-3402.
[44] Ke Y G,Yang Z J,Yu S W,et al.Characterization of OsDREB6 responsive to osmotic and cold stresses in rice[J].Journal of Plant Biology,2014,57(3):150-161.
[45] Qi W,Sun F,Wang Q,et al.Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene[J].Plant Physiology,2011,157(1):216-228.
[46] Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-,high-salt-and cold-responsive gene expression[J]. The Plant Journal, 2003, 33(4):751-763.
[47] Droc G,Ruiz M,Larmande P,et al.OryGenesDB:a database for rice reverse genetics[J].Nucleic Acids Research,2006,34:736-740.
[48] Khowaja F S,Gj N,Courtois B,et al.Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis[J].BMC Genomics,2009,10(1):276.
[49] Mideros S X,Warburton M L,Jamann T M,et al.Quantitative trait loci influencing mycotoxin contamination of maize:analysis by linkage mapping,characterization of Near-Isogenic lines,and Meta-Analysis[J].Crop Science,2014,54(1):127-142.
[50] Chardon F,Virlon B,Moreau L,et al.Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J].Genetics,2004,168(4):2169-2185. |