[1] Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants[J]. J Agric Res, 1920, 18: 553-606.
[2] Bünning E. Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion[J]. Ber Dtsch Bot Ges, 1936, 54: 590-607.
[3] Pittendrigh C S, Minis D H. The entrainment of circadian oscillations by light and their role as photoperiodic clocks[J]. Am Nat, 1964, 108: 261-295.
[4] Thomas B, Vince-Prue D. Photoperiodism in Plants[M]. Ed 2. London: Academic Press, 1997.
[5] Pittendrigh C S. Circadian rhythms and the circadian organization of living systems[J]. Cold Spring Harbor Symp Quant Biol, 1960, 25: 159-184.
[6] Vaz Nunes M, Saunders D. Photoperiodic time measurement in insects: a review of clock models[J]. J Biol Rhythms, 1999, 14: 84-104.
[7] Hamer S L, Panda S, Kay S A. Molecular bases of circadian rhythms[J]. Annu Rev Cell Dev Biol, 2001, 17: 215-253.
[8] Yanovsky M J, Kay S A. Living by the calendar: how plants know when to flower[J]. Nat Rev Mol Cell Biol, 2003, 4 (4): 265-275.
[9] Quail P H. Phytochrome photosensory signalling networks[J]. Nat Rev Mol Cell Biol, 2002, 3 (2): 85-93.
[10] Cashmore A R, Jarillo J A, Wu Y, et al. Cryptochromes: blue light receptors for plants and animals[J]. Science, 1999, 284: 760-765.
[11] Briggs W R, Christie J M. Phototropins 1 and 2: versatile plant blue-light receptors[J]. Trends Plant Sci, 2002, 7 (5): 204-210.
[12] Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice[J]. Plant Physiology, 2004, 135: 677-684.
[13] McWatters H G, Bastow R M, Hall A, et al. The ELF3 zeitnehmer regulates light signalling to the circadian clock[J]. Nature, 2000, 408: 716-720.
[14] Liu X L, Covington M F, Fankhauser C, et al. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway[J]. Plant Cell, 2001, 13: 129 3-130 4.
[15] Somers D E, Schultz T F, Milnamow M, et al. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis[J]. Cell, 2000, 101: 319-329.
[16] Jarillo J A, Capel J, Tang R H, et al. An Arabidopsis circadian clock component interacts with both CRY1 and phyB[J]. Nature, 2001, 410: 487-490.
[17] Mas P, Alabadi D, Yanovsky M J, et al. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis[J]. Plant Cell, 2003, 15: 223-236.
[18] Suarez-Lopez P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410: 1116-1120.
[19] 刘玉平, 李建平, 兰素缺, 等. 光周期迟钝基因对小麦农艺性状的影响[J]. 华北农学报, 2001, 16 (4): 59-64.
[20] Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis[J]. Curr Opin Plant Biol, 2003, 6 (2): 113-120.
[21] Griffiths S, Dunford R P, Coupland G, et al. The evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis[J]. Plant Physiology, 2003, 131: 1855-1867.
[22] Nemoto Y, Kisaka M, Fuse T, et al. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice[J]. Plant J, 2003, 36 (1): 82-93.
[23] Robert L S, Robson F, Sharpe A, et al. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus[J]. Plant Mol Biol, 1998, 37: 763-772.
[24] Liu J, Yu J, McIntosh L, et al. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering[J]. Plant Physiology, 2001, 125: 1821-1830. |