[1] |
doi: 10.13597/j.cnki.maize.science.20190510
|
|
Cui J Y, Guan X K, Yang M D, Liu Y, Ding C M, Li Y H, Wang T C. Comprehensive evaluation of maize drought resitance in maize germination period based on principal component analysis[J]. Journal of Maize Sciences, 2019, 27(5):62-72.
|
[2] |
Wang W X, Vinocur B, Altman A. Plant responses to drought,salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1):1-14.doi: 10.1007/s00425-003-1105-5.
doi: 10.1007/s00425-003-1105-5
URL
|
[3] |
Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad R A, Najafi F, Farsad L K, Salekdeh G H. Data in support of comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance[J]. Data Brief, 2015, 2: 26-28. doi: 10.1016/j.dib.2014.11.001.
doi: 10.1016/j.dib.2014.11.001
pmid: 26217700
|
[4] |
doi: 10.3969/j.issn.1002-2481.2019.03.07
|
|
Wang Q L, Jin K P, Liu Y Z, Li W X, Cao J J, Li D, Li X X. Identification index and comprehensive evaluation of drought resistance in maize seedling stage[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(3):319-322,365.
|
[5] |
doi: 10.3969/j.issn.1005-0906.2006.01.030
|
|
Zhang R H, Ma G S, Bu L D, Shi J T, Xue J Q. Appraisition and comprehensive evaluation of different genotype maize cultivars for drought resistance[J]. Seed, 2009, 28(10):91-94.
|
[6] |
赵长江, 都梦翔, 宋巨奇, 徐尚缘, 贺琳, 徐晶宇, 杨克军, 李佐同. 玉米NRL基因家族鉴定与逆境表达分析[J]. 华北农学报, 2022, 37(4):1-10.doi: 10.7668/hbnxb.20192757.
doi: 10.7668/hbnxb.20192757
|
|
Zhao C J, Du M X, Song J Q, Xu S Y, He L, Xu J Y, Yang K J, Li Z T. Genome-wide identification and expression response to stresses analysis of NRL gene family in zea mays[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4):1-10.
|
[7] |
doi: 10.7668/hbnxb.20192242
|
|
Cui R, Wang T Y, Wang C Y, Li J X, Zhang X Y, Liu S X. Effects of drought stress on growth characters and yield of different maize varieties[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1):94-100.
doi: 10.7668/hbnxb.20192242
|
[8] |
Xu J, Yuan Y B, Xu Y B, Zhang G Y, Guo X S, Wu F K, Wang Q, Rong T Z, Pan G T, Cao M J, Tang Q L, Gao S B, Liu Y X, Wang J, Lan H, Lu Y L. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize[J]. BMC Plant Biology, 2014, 14:83.doi: 10.1186/1471-2229-14-83.
doi: 10.1186/1471-2229-14-83
pmid: 24684805
|
[9] |
doi: 10.3969/j.issn.1005-0906.2005.z1.037
|
|
Song D Z, Zhang W Z, Liu J X, Li H S, Yang G Y, Zhao J F. Breeding report of middle and late maturity maize single cross variety Luyu 13[J]. Journal of Maize Sciences, 2005, 13(S1):79-81.
|
[10] |
doi: 10.3969/j.issn.1003-8701.2008.01.002
|
|
Li Z Q, Li Q X, Song D Z, Sun W R, Huo C B. Analysis on crop productivity,stability and adaptability of maize hybrid Luyu 13[J]. Journal of Jilin Agricultural Sciences, 2008, 33(1):7-9.
|
[11] |
doi: 10.3969/j.issn.0517-6611.2019.19.011
|
|
Zhang W Z, Guo G L, Song D Z, Li H, Li Z Q, Lu M, Wang H H. Breeding and application of maize inbred line 1572[J]. Journal of Anhui Agricultural Sciences, 2019, 47(19):33-35.
|
[12] |
Zhao J F, Sun Z F, Zheng J, Guo X Y, Dong Z G, Huai J L, Gou M Y, He J G, Jin Y S, Wang J H, Wang G Y. Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Molecular Biology, 2009, 69(6):661-674.doi: 10.1007/s11103-008-9445-y.
doi: 10.1007/s11103-008-9445-y
pmid: 19105030
|
[13] |
doi: 10.13597/j.cnki.maize.science.20160306
|
|
Yu A L, Zhao J F, Wang G H, Du Y W, Li Y F, Zhang Z. Expression analysis of maize ZmSAMS1 gene under salt,drought and other stresses[J]. Journal of Maize Sciences, 2016, 24(3):31-35.
|
[14] |
doi: 10.11924/j.issn.1000-6850.casb16120083
|
|
Ren Y L, Qiao D H, Hu C H, Zhang L, Li Y L. Drought stress on different maize inbred lines at germination stage[J]. Chinese Agricultural Science Bulletin, 2017, 33(9):17-21.
doi: 10.11924/j.issn.1000-6850.casb16120083
|
[15] |
doi: 10.3969/j.issn.1671-895x.2021.01.019
|
|
Xu J, Yu H L, Sun S W, Wang J Q, Han Y H, Yu Y K, Zhou C, Lan H Y, Ding X Y. Effects of PEG simulated drought stress on germination period of different maize varieties[J]. China Seed Industry, 2021(1):61-64.
|
[16] |
赵晋锋, 杜艳伟, 王高鸿, 李颜方, 赵根有, 王振华, 成凯, 王玉文, 余爱丽. 谷子NADP-ME的鉴定及其对逆境胁迫的响应[J]. 中国农业科学, 2019, 52(22):3950-3963.doi: 10.3864/j.issn.0578-1752.2019.22.002.
doi: 10.3864/j.issn.0578-1752.2019.22.002
|
|
Zhao J F, Du Y W, Wang G H, Li Y F, Zhao G Y, Wang Z H, Cheng K, Wang Y W, Yu A L. Identification NADP-ME gene of foxtail millet and its response to stress[J]. Scientia Agricultura Sinica, 2019, 52(22):3950-3963.
doi: 10.3864/j.issn.0578-1752.2019.22.002
|
[17] |
Sambrook J, Russell D W. Molecular cloning:a laboratory manual[M]. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
|
[18] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2 -ΔΔCTmethod[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[19] |
doi: 10.11924/j.issn.1000-6850.casb15090139
|
|
Yu A L, Zhao J F, Wang G H, Du Y W, Li Y F, Zhang Z. Identification of SAMS genes from maize and its expression under adversity stresses[J]. Chinese Agricultural Science Bulletin, 2016, 32(8):30-36.
doi: 10.11924/j.issn.1000-6850.casb15090139
|
[20] |
Kevbrin V V, Zengler K, Lysenko A M, Wiegel J. Anoxybacillus kamchatkensis sp.nov.,a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley,Kamchatka[J]. Extremophiles, 2005, 9(5):391-398.doi: 10.1007/s00792-005-0479-7.
doi: 10.1007/s00792-005-0479-7
pmid: 16142505
|
[21] |
Mato J M, Alvarez L, Ortiz P, Pajares M A. S-adenosylmethionine synthesis:Molecular mechanisms and clinical implications[J]. Pharmacology & Therapeutics, 1997, 73(3):265-280.doi: 10.1016/s0163-7258(96)00197-0.
doi: 10.1016/s0163-7258(96)00197-0
|
[22] |
doi: 10.13592/j.cnki.ppj.2013.04.009
|
|
Chai X P, Zhang Y X, Tan J J, Feng S S, Chai T Y. Analysis of expression patterns of genes participated in S-adenosylmethionine(SAM)metabolic pathway in wheat under Zn stress[J]. Plant Physiology Journal, 2013, 49(4):375-384.
|
[23] |
doi: 10.3321/j.issn:0496-3490.2008.09.014
|
|
Fan J P, Bai X, Li Y, Ji W, Wang X, Cai H, Zhu Y M. Cloning and function analysis of gene SAMS from Glycine soja[J]. Acta Agronomica Sinica, 2008, 34(9):1581-1587.
doi: 10.3724/SP.J.1006.2008.01581
URL
|
[24] |
doi: 10.1016/j.tplants.2008.10.005
pmid: 19054707
|
[25] |
Guo Y, Halfter U, Ishitani M, Zhu J K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. The Plant Cell, 2001, 13(6):1383-1400.doi: 10.1105/tpc.13.6.1383.
doi: 10.1105/tpc.13.6.1383
URL
|
[26] |
Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network[J]. Planta, 2004, 219(6):915-924.doi: 10.1007/s00425-004-1333-3.
doi: 10.1007/s00425-004-1333-3
pmid: 15322881
|
[27] |
doi: 10.3969/j.issn.1008-0864.2011.04.05
|
|
Zhao J F, Yu A L, Wang G H, Tian G, Wang H Y, Du Y W, Chang H X. Progress of CBL/CIPK signal system in response to stresses in plant[J]. Journal of Agricultural Science and Technology, 2011, 13(4):32-38.
doi: 10.3969/j.issn.1008-0864.2011.04.05
|
[28] |
doi: 10.3969/j.issn.1004-874x.2013.08.003
|
|
Yan J, Tao Q J, Chen J, Wang Q, Tang F R, Lu W, Zhang Y. Salt-tolerance indefication of new maize inbred lines and preliminary study on the mechanism of salt-tolerance[J]. Guangdong Agricultural Sciences, 2013, 40(8):8-10,21.
|