[1] Miao F H, Guo Z G, Xue R, Wang X Z, Shen Y Y. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and yak performance in an alpine meadow on the Qinghai-Tibetan Plateau[J]. PLoS One, 2015, 10(6):e0127275. doi:10.1371/journal.pone.0127275. [2] 韩杰, 熊显荣, 蔡雯祎, 杨显英, 阿果约达, 张燕红, 李键. 牦牛KDM4A 基因克隆、组织表达谱及其在卵母细胞和颗粒细胞中的表达[J]. 畜牧兽医学报, 2018, 49(2):291-299. doi:10.11843/j.issn.0366-6964.2018.02.008. Han J, Xiong X R, Cai W W, Yang X Y, A Guo Y D, Zhang Y H, Li J. Cloning of KDM4A gene and its expression in different tissues, oocyte and granulosa cell of Yak[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(2):291-299. [3] 阿果约达, 熊显荣, 王艳, 杨显英, 韩杰, 王斌, 李键. 犏牛雄性不育相关lncRNA的鉴定与分析[J]. 畜牧兽医学报, 2019, 50(3):551-561. doi:10.11843/j.issn.0366-6964.2019.03.010. A Guo Y D, Xiong X R, Wang Y, Yang X Y, Han J, Wang B, Li J. Identification and analysis of long-coding RNA associated with Cattle-yak male infertility[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(3):551-561. [4] 信金伟, 张成福, 姬秋梅, 李超, 胡永锋, 王金辉. 类乌齐牦牛产肉性能及肉品质分析[J].湖北农业科学, 2017, 56(3):501-505. doi:10.14088/j.cnki.issn0439-8114.2017.03.027. Xin J W, Zhang C F, Ji Q M, Li C, Hu Y F, Wang J H. Study on meat production and quality properties of Leiwuqi Yak[J]. Hubei Agricultural Sciences, 2017, 56(3):501-505. [5] Jiang Q, Sun B F, Liu Q, Cai M C, Wu R F, Wang F Q, Yao Y X, Wang Y Z, Wang X X. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism[J]. FASEB Journal, 2019, 33(2):2971-2981. doi:10.1096/fj.201801393RRR. [6] Yang C, Liu J B, Wu X Y, Bao P J, Long R J, Guo X, Ding X Z, Yan P. The response of gene expression associated with lipid metabolism, fat deposition and fatty acid profile in the Longissimus dorsi muscle of Gannan yaks to different energy levels of diets[J]. PLoS One, 2017, 12(11):e0187604. doi:10.1371/journal.pone.0187604. [7] Park S J, Beak S H, Jung D J S, Kim S Y, Jeong I H, Piao M Y, Kang H J, Fassah D M, Na S W, Yoo S P, Baik M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle-A review[J]. Asian-Australasian Journal of Animal Scien ces, 2018, 31(7):1043-1061. doi:10.5713/ajas.18.0310. [8] Hocqyette J F, Graulet B, Olivecrona T. Lipoprotein lipase activity and mRNA levels in bovine tissues[J]. Comparative Biochemistry and Physiology, 1998, 121(2):201-212. doi:10.1016/s0305-0491(98)10090-1. [9] Hocqyette J F, Cassar-malek I, Scalberat A, Guillou F. Contribution of genomics to the understanding of physiological functions[J]. Journal of Physiology and Pharmacology, 2009, 60(3):5-16. [10] Khan R, Raza S H A, Schreurs N, Wang X Y, Wang H B, Irfan U, Abdur R, Syed M S, Sarzamin K, Zan L S. Bioinformatics analysis and transcription regulation of TORC1 gene through transcription factors NRF1 and Smad3 in bovine preadipocytes[J]. Genomics, 2020, 112(2):1575-1587. doi:10.1016/j.ygeno.2019.09.007. [11] Khan R, Raza S H A, Junjvlieke Z, Wang X Y, Matthew G, Ibrahim E E, Wang H B, Zan L S. Function and transcriptional regulation of bovine TORC2 gene in adipocytes:roles of C/EBP, XBP1, INSM1 and ZNF263[J]. International Journal of Molecular Sciences, 2019, 20(18):4338. doi:10.3390/ijms20184338. [12] Hong J Y, Li S J, Wang X Y, Mei C G, Zan L S. Study of expression analysis of SIRT4 and the coordinate regulation of bovine adipocyte differentiation by SIRT4 and its transcription factors[J]. Bioscience Reports, 2018, 38(6):BSR20181705. doi:10.1042/BSR20181705. [13] 杨超. 牦牛脂肪代谢对饲粮能量水平响应的分子机制研究[D]. 兰州:兰州大学, 2018. Yang C. The response of molecular mechanism of adipose metabolism in yak to different dietar energy levels[D]. Lanzhou:Lanzhou University, 2018. [14] Choat W T, Krehbiel C R, Duff G C, Kirksey R E, Lauriault L M, Rivera J D, Capitan B M, Walker D A, Donart G B, Goad C L. Influence of grazing dormant native range or winter wheat pasture on subsequent finishing cattle performance, carcass characteristics, and ruminal metabolism[J]. Journal of Animal Science, 2003, 81(12):3191-3201. doi:10.2527/2003.81123191x. [15] Schoonmaker J P, Cecava M J, Faulkner D B, Fluharty F L, Zerby H N, Loerch S C. Effect of source of energy and rate of growth on performance, carcass characteristics, ruminal fermentation, and serum glucose and insulin of early-weaned steers[J]. Journal of Animal Science, 2003, 81(4):843-855. doi:10.2527/2003.814843x. [16] Carvalho J R R, Chizzotti M L, Ramos E M, Machado-Neto O R, Lanna D P D, Lopes L S, Teixeira P D, Ladeira M M. Qualitative characteristics of meat from young bulls fed different levels of crude glycerin[J]. Meat Science, 2014, 96(2):977-983. doi:10.1016/j.meatsci.2013.10.020. [17] Liu X F, Bai C L, Ding X B, Wei Z Y, Guo H, Li G P. Microarray analysis of the gene expression profile and lipid metabolism in Fat-1 transgenic cattle[J]. PLoS One, 2015, 10(10):e0138874. doi:10.1371/journal.pone.0138874. [18] Staples C R, Thatcher W W, Clark J H. Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows[J]. Journal of Dairy Science, 1990, 73(4):938-947. doi:10.3168/jds.S0022-0302(90)78750-4. [19] Zhang Y F, Wu X Y, Liang C N, Bao P J, Ding X Z, Chu M, Jia C J, Guo X, Yan P. MicroRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens[J]. Gene, 2018, 650:41-48. doi:10.1016/j.gene.2018.01.054. [20] Sasaki N, Nakamura M, Soeta S. Molecular analysis of cytosolic and mitochondrial malate dehydrogenases isolated from domestic cats (Felis catus)[J]. Genetics and Molecular Research, 2014, 13(3):6855-6864. doi:10.4238/2014.August.29.7. [21] 陈露露, 王会, 柴志欣, 钟金城, 王吉坤, 陈智华, 姬秋梅, 信金伟. 牦牛MDH Ⅰ 基因的克隆及组织表达分析[J]. 生物技术通报, 2019, 35(2):129-136. doi:10.13560/j.cnki.biotech.bull.1985.2018-0712. Chen L L, Wang H, Chai Z X, Zhong J C, Wang J K, Chen Z H, Ji Q M, Xin J W. Cloning and tissue expression analysis of MDHI gene in Yak[J]. Biotechnology Bulletin, 2019, 35(2):129-136. [22] Nunes-nesi A, Carrari F, Lytovchenko A, Smith A M O, Loureiro M E, Ratcliffe R G, Sweetlove L J, Fernie A R. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants[J]. Plant Physiology, 2005, 137(2):611-622. doi:10.1104/pp.104.055566. [23] Tomaz T, Bagard M, Pracharoenwattana I, Lindén P, Lee C P, Carroll A J,Ströher E,Smith S M, Gardeström P, Millar A H. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis[J]. Plant Physiology, 2010, 154(3):1143-1157. doi:10.1104/pp.110.161612. [24] Bquwe H, Hagemann M, Fernie A R. Photorespiration:players, partners and origin[J]. Trends Plant Science, 2010, 15(6):330-336. doi:10.1016/j.tplants.2010.03.006. [25] Bionaz M, Loor J J. Gene networks driving bovine milk fat synthesis during the lactation cycle[J]. BMC Genomics, 2008, 9:366. doi:10.1186/1471-2164-9-366. [26] 李绍文, 孟玉萍, 张宗炳, 李举怀. 意蜂和中蜂四种同工酶的研究[J]. 昆虫学报, 1988, 31(1):15-31. doi:10.16380/j.kcxb.1988.01.003. Li S W, Meng Y P, Zhang Z B, Li J H. Studies on four isozymes of two species of honeybees, Apis mellifera and Apis cerana[J]. Acta Entomologica Sinica, 1988, 31(1):15-31. [27] Guan H Y, Tang Z Q, Li H. Correlation analysis between single-nucleotide polymorphism of malate dehydrogenase gene 5'-flanking region and growth and body composition traits in chicken[J]. Acta Genetica Sinica, 2006, 33(6):501-506. doi:10.1016/S0379-4172(06)60078-4. [28] 刘大林. Apn、MDH 和IGF-I 基因对京海黄鸡重要经济性状的遗传性研究[D]. 扬州:扬州大学, 2009. Liu D L. Research on genetic effect of Apn gene, MDH gene and IGF-I gene on economical traits in Jinghai Yellow Chicken[D]. Yangzhou:Yangzhou University, 2009. [29] 季海峰. 中国科学技术协会首届青年学术年会论文集[C]. 农科分册,北京:中国科学技术协会首届青年学术年会,1992. Ji H F. Proceedings of the first youth academic annual meeting of the China Association for Science and Technology[C]. Agricultural Division,Beijing:China Science and Technology Association First Youth Academic Conference,1992. [30] Cascón A, Comino-Méndez L, Currás-Freixes M, de Cubas A A, Contreras L, Richter S, Peitzsch M, Mancikova V, Inglada-Pérez L, Pérez-Barrios A, Calatayud M, Azriel S, Villar-Vicente R, Aller J, Setién F, Moran S, Garcia J F, Río-Machín A, Letón R, Gómez-Graña A, Apellániz-Ruiz M, Roncador G, Esteller M, Rodríguez-Antona C, Satrústegui J, Eisenhofer G, Urioste M, Robledo M. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene[J]. Journal of the National Cancer Institute, 2015, 107(5):djv053. doi:10.1093/jnci/djv053. [31] Ait-Ei-Mkadem S, Dayem-Quere M, Gusic M, Chaussenot A, Bannwarth S, François B, Genin E C, Fragaki K, Volker-Touw C L M, Vasnier C, Serre V,van Gassen K L I, Lespinasse F, Richter S, Eisenhofer G, Rouzier C, Mochel F, Saint-Martin A D, Warde M-T A, de Sain-van der Velde M G M, Jans J J M, Amiel J, Avsec Z, Mertes C, Haack T B, Strom T, Meitinger T, Bonnen P E, Taylor R W, Gagneur J, van Hasselt P M, Rötig A, Delahodde A, Prokisch H, Fuchs S A, Paquis-Flucklinger V. Mutations in MDH2, encoding a krebs cycle enzyme, cause early-onset severe encephalopathy[J]. American Journal of Human Genetics, 2017, 100(1):151-159. doi:10.1016/j.ajhg.2016.11.014. [32] Torroni A, Miller J A, Moore L G, Zamudio S, Zhuang J G, Droma T, Wallace D C. Mitochondrial DNA analysis in Tibet:implications for the origin of the Tibetan population and its adaptation to high altitude[J]. American Journal Physical Anthropology, 1994, 93(2):189-199. doi:10.1002/ajpa.1330930204. [33] 李莉. 不同海拔地区牦牛心肌、骨骼肌线粒体氧自由基代谢的研究[J]. 畜牧与兽医, 2010, 42(9):65-68. Li L. Study on mitochondrial oxygen free radical metabolism of Yak's myocardium and skeletal muscle in different altitude areas[J]. Animal Husbandry & Veterinary Medicine, 2010, 42(9):65-68. [34] 郭胜祥, 刘永年, 李景荣, 冯宁娜, 王丽华. 高原适应动物牦牛与普通黄牛肺血管反应性的比较研究[J].中国病理生理杂志, 1995, 11(3):230-233. doi:10.3321/j.issn:1000-4718.1995.03.003. Guo S X, Liu Y N, Li J R, Feng N N, Wang L H. Comparative study of the reponsiveness of pulmonary artery between yaks and cows[J]. Chinese Journal of Pathophysiology, 1995, 11(3):230-233. [35] Gibal A M J, Young M E, Taegtmeyer H. Anaplerosis of the citrie acid cyele:role in energy metabolism of heart and skeletal muscle[J]. Acta Physiologica Scandinavica, 2000, 168(4):657-665. doi:10.1046/j.1365-201x.2000.00717.x. [36] Shin K C, Hwang I, Choe S S, Park J, Ji Y, Kim J I, Lee G Y, Choi S H, Ching J H, Kovalik J P, Kim J B. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation[J]. Nature Communications, 2017, 8(1):1087. doi:10.1038/s41467-017-01232-w. [37] Zarea M, Barroso E, Palomer X, Escolà-Gil J C, Cedó L, Wahli W, Vázquez-Carrera M. Pharmacological PPARβ/δ activation upregulates VLDLR in hepatocytes[J]. Clínica e Investigación en Arteriosclerosis, 2019, 31(3):111-118. doi:10.1016/j.arteri.2019.01.004. [38] Stachowiak M, Nowacka-Woszuk J, Szydlowski M, Switonski M. The ACACA and SREBF1 genes are promising markers for pig carcass and performance traits, but not for fatty acid content in the longissimus dorsi muscle and adipose tissue[J]. Meat Science, 2013, 95(1):64-71. doi:10.1016/j.meatsci.2013.04.021. [39] 胡言. 中国荷斯坦牛CSN3、ACACA 基因多态性及其与泌乳性状的关联性分析[D]. 咸阳:西北农林科技大学, 2017. Hu Y. Polymorphism of CSN3, ACACA genes and its association with milk production traits in Chinese Holstein cattle[D]. Xianyang:Northwest A&F University, 2017. [40] Inoue T, Hariya N, Imamochi Y, Dey A, Ozato K, Goda T, Kubota T, Mochizuki K. Epigenetic regulation of lipoprotein lipase gene via BRD4, which is potentially associated with adipocyte differentiation and insulin resistance[J]. European Journal of Pharmacology, 2019, 858:172492. doi:10.1016/j.ejphar.2019.172492. [41] 孙炜涵, 闫成光, 邢晋祎, 田炳刚, 郑岚, 宋来乐. 肉鸡LPL活性和基因表达水平的发育性变化[J]. 黑龙江畜牧兽医, 2019(8):36-38,43. doi:10.13881/j.cnki.hljxmsy.2018.10.0382. Sun W H, Yan C G, Xin J W, Tian B G, Zheng L, Song L L. Developmental change of LPL activity and gene expression levels in broilers[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(8):36-38,43. [42] Han L Q, Gao T Y, Yang G Y, Loor J J. Overexpression of SREBF chaperone (SCAP) enhances nuclear SREBP1 translocation to upregulate fatty acid synthase (FASN) gene expression in bovine mammary epithelial cells[J]. Journal of Dairy Science, 2018, 101(7):6523-6531. doi:10.3168/jds.2018-14382. [43] Keung W, Ussher J R, Jaswal J S, Raubenheimer M, Lam V H M, Wagg C S, Lopaschuk G D. Inhibition of carnitine Palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice[J]. Diabetes, 2013, 62(3):711-720. doi:10.2337/db12-0259. [44] 宋铭琪, 钟云飞, 郭佳玲, 陈拥军, 罗莉, 林仕梅. 饲料脂肪水平对大口黑鲈CPT1 表达的影响[J]. 水产学报, 2019, 43(10):2166-2174.doi:10.11964/jfc.20190911942. Song M Q, Zhong Y F, Guo J L, Chen Y J, Luo L, Lin S M. Effects of dietary lipid levels on the expression of CPT1 in Micropterus salmoides[J]. Journal of fisheries of China, 2019, 43(10):2166-2174. [45] 梁计峻, 林亚秋, 俞雨阳, 王永, 朱江江. 山羊CPT1A 基因的克隆表达及肌内脂肪含量的相关性分析[J]. 华北农学报, 2019, 34(5):231-238. doi:10.7668/hbnxb.201751529. Liang J J, Lin Y Q, Yu Y Y, Wang Y, Zhu J J. Cloning and expression of goat CPT1A gene and its correlation with intramuscular fat content[J]. Acta Argiculturae Boreali-Sinica, 2019, 34(5):231-238. [46] Zhou S L, Li M Z, Li Q H, Guan J Q, Li X W. Differential expression analysis of porcine MDH1, MDH2 and ME1 genes in adipose tissues[J]. Genetics and Molecular Research, 2012, 11(2):1254-1259. doi:10.4238/2012.May.9.4. [47] 宋庆文. 不同饲粮营养水平下荣昌猪和DLY猪脂肪(酸)代谢关键酶活性的发育性变化研究[D]. 呼和浩特:内蒙古农业大学, 2007. Song Q W. Studies on development changes of key enzymes involved in lipid metabolism in Rongchang and DLY pigs feed different dietary nutrient levels[D]. Hohhot:Inner Mongolia Agricultural University, 2007. |