[1] 储昭庆,李李,宋丽,薛红卫.油菜素内酯生物合成与功能的研究进展[J].植物学通报, 2006, 23(5):543-555.doi:10.3969/j.issn.1674-3466.2006.05.010. Cu Z Q, Li L, Song L, Xue H W. Advances on brassinosteroid biosynthesis and functions[J]. Chinese Bulletin of Botany, 2006, 23(5):543-555. [2] Chen J N, Nolan T M, Ye H X, Zhang M C, Tong H N, Xin P Y,Chu J F, Chu C C, Li Z H, Yin Y H. Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response[J]. The Plant Cell, 2017, 29(6):1425.doi:10.1105/tpc.17.00364. [3] Lü B S, Tian H Y, Zhang F, Liu J J, Lu S C, Bai M Y, Li C Y, Ding Z J. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis[J]. Plos Genetics, 2018, 14(1):e1007144.doi:10.1371/journal.pgen.1007144. [4] Foo E, Mcadam E L, Weller J L, Reid J B. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea[J]. Journal of Experimental Botany, 2016, 67(8):2413-2424.doi:10.1093/jxb/erw047. [5] Joo S H, Kim T W, Son S H, Lee W S, Yokota T, Kim S K. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2011, 63(5):1823-1833. doi:10.1093/jxb/err354. [6] 李辉,左钦月,涂升斌.油菜素内酯生物合成和代谢研究进展[J].植物生理学报, 2015, 51(11):1787-1798.doi:10.13592/j.cnki.ppj.2015.0377. L H, Zuo Q Y, Tu S B. Advances in brassinosteroid biosynthesis and metabolism[J]. Plant Physiology Journal, 2015, 51(11):1787-1798. [7] Wang Z Y, Bai M Y, Oh E, Zhu J Y. Brassinosteroid signaling network and regulation of photomorphogenesis[J]. Annual Review of Genetics, 2012, 46(1):701-724.doi:10.1146/annurev-genet-102209-163450. [8] Zhu J Y,Sae-Seaw J,Wang Z Y.Brassinosteroid signalling[J].Development,2013,140(8):1615-1620.doi:10.1242/dev.060590. [9] Ohnishi T, Szatmari A M, Watanabe B,Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis[J].The Plant Cell, 2006, 18(11):3275-3288.doi:10.1105/tpc.106.045443. [10] Yoshimitsu Y, Tanaka K, Fukuda W, Asami T, Yoshida S, Hayashi K, Kamiya Y, Jikumaru Y, Shigeta T, Nakamura Y, Matsuo T, Okamoto S. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana[J]. PLoS One, 2011, 6(8):e23851.doi:10.1371/journal.pone.0023851. [11] 王凤茹, 王志勇. 油菜素内酯信号转导的研究进展[J]. 华北农学报, 2008, 23(S2):29-39.doi:10.7668/hbnxb.2008.S2.007. Wng F R, Wang Z Y. The research of brassinosteroids signal transduction[J].Acta Agriculturae Boreali-Sinica, 2008, 23(S2):29-39. [12] Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation[J]. Journal of Biological Chemistry, 2012, 287(37):31551-31560.doi:10.1074/jbc.m112.392720. [13] Choe S W, Dilkes B P, Fujioka S, Takatsuto S, Sakurai A, Feldmann K A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis[J]. The Plant Cell, 1998, 10(2):231-243.doi:10.2307/3870701. [14] Kwon M, Choe S. Brassinosteroid biosynthesis and dwarf mutants[J]. Journal of Plant Biology, 2005, 48(1):1.doi:10.1007/bf03030559. [15] Choe S W, Dilkes B P, Gregory B D, Ross A S, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax F E, Feldmann K A. The Arabidopsisdwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis[J]. Plant Physiology, 1999, 119(3):897-907.doi:10.1104/pp.119.3.897. [16] Youn J H, Kim T W, Joo S H, Son S H, Roh J, Kim S, Kim T W, Kim S K. Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2018, 69(8):1873-1886.doi:10.1093/jxb/ery038. [17] Hossain Z, Mcgarvey B, Amyot L, Gruber M, Jung J, Hannoufa A. DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis[J]. Planta, 2012, 235(3):485-498.doi:10.1007/s00425-011-1519-4. [18] Tao Y Z, Zheng J, Xu Z M, Zhang X H, Zhang K, Wang G Y. Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene[J]. Plant Science, 2004, 167(4):743-751.doi:10.1016/j.plantsci.2004.05.012. [19] Best N B, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes B P. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiology, 2016, 171(4):2633-2647.doi:10.1104/pp.16.00399. [20] Ezura H, Owino W O. Melon, an alternative model plant for elucidating fruit ripening[J]. Plant Science, 2008, 175(1-2):121-129.doi:10.1016/j.plantsci.2008.02.004. [21] 王永行, 白立华,杜瑞霞,郭宏强,杨钦方,王鹏,徐广祥. 甜瓜主要产量性状的回归与通径分析[J]. 北方农业学报, 2016, 44(3):37-39. doi:10.3969/j.issn.1007-0907.2016.03.010. Wng Y X, Bai L H, Du R X, Guo H Q, Yang Q F, Wang P, Xu G X. Analysis of regression and path of main yield traits of melon[J]. Journal of Northern Agriculture, 2016, 44(3):37-39. [22] Zhang Y P, Zhu X H, Ding H D, Yang S J, Chen Y Y. Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars[J]. Photosynthetica, 2013, 51(3):341-349. doi:10.1007/s11099-013-0031-4. [23] 何子顺, 李劲松, 张衍云. 植物生长调节剂在甜瓜生产上的应用技术[J]. 云南农业科技, 2009(2):37-38.doi:10.3969/j.issn.1000-0488.2009.02.018. H Z S, Li J S, Zhang Y Y. Application of plant growth regulators in melon production[J]. Yunnan Agricultural science and Technology, 2009(2):37-38. [24] Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua N H. The ArabidopsisDIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis[J]. The Plant Cell, 1998, 10(10):1677-1690.doi:10.2307/3870765. [25] Lisso J, Altmann T, Müssig C. Metabolic changes in fruits of the tomato dx mutant[J]. Phytochemistry, 2006, 67(20):2232-2238.doi:10.1016/j.phytochem.2006.07.008. [26] 高原. 番茄果实发育的激素调节[J]. 吉林蔬菜, 2009(4):77-80.doi:10.3969/j.issn.1672-0180.2009.04.051. Go Y. Hormone regulation of tomato fruit development[J]. Jilin Vegetable, 2009(4):77-80. |