[1] Åkerfelt M, Morimoto R I, Sistonen L. Heat shock factors:integrators of cell stress, development and lifespan[J]. Nat Rev Mol Cell Bio, 2010, 11(8):545-555.
[2] Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends Plant Sci, 2016, 22(1):53-65.
[3] Wiederrecht G,Seto D,Parker C S.Isolation of the gene encoding the S.cerevisiae heatshock transcription factor[J]. Cell,1988,54(6):841-853.
[4] Clos J,Westwood J T,Becker P B,et al.Molecular cloning and expression of a heaxameric drosophila heat stress factor subject to negative regulation[J].Cell,1990,63(5):1085-1097.
[5] Fujimoto M, Hayashida N, Katoh, et al. A novel mouse HSF3 has a potential to activate nonclassical heat-shock genes during heat shock[J]. Mol Biol Cell, 2010, 21(1):106-116.
[6] Rabindran S K,Giorgi G,Clos J,et al.Molecular cloning and expression of a human heat shock factor,HSF1[J].Proc Natl Acad Sci USA,1991,88(16):6906-6910.
[7] Scharf K D,Rose S,Zott W,et al.Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J].EMBO J,1990,9(13):4495-4501.
[8] Hü bel A,Sch ffl F. Arabidopsis heat shock factor:isolation and characterization of the gene and the recombinant protein[J].Plant Mol Biol,1994,26(1):353-362.
[9] Yamanouchi U,Yano M,Lin H,et al.A rice spotted leaf gene, Spl7,encodes a heat stress transcription factor protein[J].Proc Natl Acad Sci USA,2002,99(11):7530-7535.
[10] Guo J,Wu J,Ji Q,et al.Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis[J].J Genetics Genomics,2008,35(2):105-118.
[11] Chauhan H,Khurana N,Agarwal P,et al.Heat shock factors in rice(Oryza sativa L.):genome-wide expression analysis during reproductive development and abiotic stress[J].Mol Genet Genomics,2011,286(2):171-187.
[12] Lin Y X,Jiang H Y,Chu Z X,et al.Genome-wide identification,classification and analysis of heat shock transcription factor family in maize[J].BMC Genomics,2011,12(1):76.
[13] Scharf K D,Berberich T,Ebersberger I,et al.The plant heat stress transcription factor(Hsf)family:structure,function and evolution[J].Biochimica et Biophysica Acta 2012,1819(2):104-119.
[14] Song X,Liu G,Duan W,et al.Genome-wide identification,classification and expression analysis of the heat shock transcription factor family in Chinese cabbage[J].Mol Genet Genomics,2014,289(4):541-551.
[15] Huang Y,Li M Y,Wang F,et al.Heat shock factors in carrot:genome-wide identification,classification,and expression profiles response to abiotic stress[J].Mol Biol Rep,2015,42(5):893-905.
[16] Liu Z W, Wu Z J, Li X H, et al. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress[J]. Gene, 2016, 576(1):52-59.
[17] Guo M, Liu J H, Ma X, et al. The plant heat stress transcription factors (HSFs):structure, regulation, and function in response to abiotic stresses[J]. Front Plant Sci, 2016, 7(273):114.
[18] Raxwal V. Structural and functional diversity of plant heat shock factors[J]. Plant Stress, 2012, 6:89-96.
[19] Velasco R,Zharkikh A,Affourtit J,et al.The genome of the domesticated apple(Malus domestica Borkh.)[J].Nature Genetics,2010,42(10):833-839.
[20] Giorno F,Guerriero G,Baric S,et al.Heat shock transcriptional factors in Malus domestica:identification,classification and expression analysis[J].BMC Genomics,2012,13(1):639.
[21] Edgar R C.MUSCLE:multiple sequence alignment with high accuracy and high throughput[J].Nucl Acids Res,2004,32(5):1792-1797.
[22] Tamura K, Stecher G, Peterson D, et al. MEGA6:Molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(12):2725-2729.
[23] Thompson J D,Gibson T J,Plewniak F,et al.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Res,1997,25(25):4876-4882.
[24] Castresana J.Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J].Mol Biol Evol,2000,17(4):540-552.
[25] Suyama M,Torrents D,Bork P.PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments[J].Nucleic Acids Res,2006,34:609-612.
[26] Page R D.TreeView:an application to display phylogenetic trees on personal computers[J].Comput Appl Biosci,1996,12(4):357-358.
[27] Yang Z.PAML4:phylogenetic analysis by maximum likelihood[J].Mol Biol Evol,2007,24(8):1586-1591.
[28] Arnold K,Bordoli L,Kopp J,et al.The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling[J].Bioinformatics,2006,22(2):195-201.
[29] Yang Z,Wong W S,Nielsen R.Bayes empirical Bayes inference of amino acid sites under positive selection[J].Mol Biol Evol,2005,22(4):1107-1118.
[30] Zhang J,Nielsen R,Yang Z.Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J].Mol Biol Evol,2005,22(12):2472-2479.
[31] Wang F,Dong Q,Jiang H,et al.Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula[J].Mol Biol Rep,2012,39(2):1877-1886.
[32] Chung E,Kim K M,Lee J H.Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max[J].J Genet Genomics,2013,40(3):127-135. |