[1] 谢栋, 彭憬, 王津红, 等. 枯草芽孢杆菌抗菌蛋白X98 Ⅲ的纯化与性质[J]. 微生物学报, 1998, 31(1): 13-191.
[2] Patel P S, Huang S, Fisher S, et al. Bacillaene, a novel inhibitor of prokaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physicochemical characterization and biological activity[J]. Antibiotics, 1995, 48: 997-1003.
[3] Berg C, Berg D E, Groisman E A. Transposable elements and the genetic engineering of bacteria[C], Berg D E, Howe M. Mobile DNA. Washington, D. C: American Society for Microbiology, 1989: 879-925.
[4] Halling S M, Kleckner N. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity[J]. Cell, 1982, 28: 155-163.
[5] Youngman P J, Perkins J B, Sandman K. Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis[C], Hoch J A, Setlow P. Molecular biology of microbial differentiation. Washington D. C: ASM Press, 1985: 47-54.
[6] Youngman P J, Perkins J B, Losick R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917[J]. Proc Natl Acad Sci USA, 1983, 80: 2305-2309.[HJ0]
[7] Nada B, Lei C, John D H. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase(ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes[J]. Journal of Bacteriology, 1996, 178(22): 6579-6586.
[8] Way J C, Davies M A, Morisato D, et al. New Tn10 derivatives for transposon mutagenesis and construction of lacZ fusions by transposition[J]. Gene, 1984, 32: 369-379.
[9] Pablo T, Mark A, David D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis[J]. Molecular Microbiology, 2000, 35(5): 1110-1119.
[10] Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8(sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production[J]. Antimicrob Agents Chemother, 1999, 43: 2183-2192.
[11] 李社增, 鹿秀云, 马平, 等. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J]. 植物病理学报, 2005, 35(5): 451-455.
[12] 李社增, 鹿秀云, 马平, 等. 棉花黄萎病生防细菌NCD-2抑菌物质提取初步研究[J]. 棉花学报, 2004, 16(1): 62-63.
[13] Chang, Stanley N C. High frequency transforation of Bacillus subtilis protoplasts by plasmid NA[J]. Molecular Genetics and Genomics, 1979, 168: 111-115.
[14] Halling S M, Kleckner N. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity[J]. Cell, 1982, 28: 155-163.
[15] Haike A, Christian S, Michael H. Phosphate starvation-inducible proteins of Bacillus subtilis: Proteomics and transcriptional analysis[J]. Journal of Bacteriology, 2000, 182(16): 4478-4490.
[16] Kazuo K, Ogura M, Yamaguchi H, et al. Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems[J]. Journal of Bacteriology, 2001, 183(24): 7365-7370.
[17] Eldakak A, Hulett F M. Cys303 in the histidine kinase PhoR is crucial for the phosphotransfer reaction in the PhoPR two-component system in Bacillus subtilis[J]. Journal of Bacteriology, 2007, 189(2): 410-421.
[18] Liras P, Asturias J A, Martn J F. Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis[J]. Trends Biotechnol, 1990, 8: 184-189.
[19] Sola-Landa A, Moura R S, Mart′n J F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans[J]. Proc Natl Acad Sci, 2003, 100(10): 6133-6138.
[20] Robichon D, Maryvonne A, Rozenn G, et al. Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-PhoR global regulators[J]. Journal of Bacteriology, 2000, 182(5): 1226-1231. |