| [1] |
Lu R, Zhang J, Wu Y W, Wang Y, Zhang J, Zheng Y, Li Y, Li X B. bHLH transcription factors LP1 and LP2 regulate longitudinal cell elongation[J]. Plant Physiology, 2021, 187(4):2577-2591.doi: 10.1093/plphys/kiab387.
pmid: 34618066
|
| [2] |
Shen T J, Wen X P, Wen Z, Qiu Z L, Hou Q D, Li Z C, Mei L N, Yu H H, Qiao G. Genome-wide identification and expression analysis of bHLH transcription factor family in response to cold stress in sweet cherry( Prunus avium L.)[J]. Scientia Horticulturae, 2021, 279:109905.doi: 10.1016/j.scienta.2021.109905.
URL
|
| [3] |
Lu R, Li Y, Zhang J, Wang Y, Zhang J, Li Y, Zheng Y, Li X B. The bHLH/HLH transcription factors GhFP2 and GhACE1 antagonistically regulate fiber elongation in cotton[J]. Plant Physiology, 2022, 189(2):628-643.doi: 10.1093/plphys/kiac088.
pmid: 35226094
|
| [4] |
Wu H H, Fan L Q, Guo M Z, Liu L, Liu L S, Hou L Y, Zheng L, Qanmber G, Lu L L, Zhang J, Li F G, Yang Z R. GhPRE1A promotes cotton fibre elongation by activating the DNA-binding bHLH factor GhPAS1[J]. Plant Biotechnology Journal, 2023, 21(5):896-898.doi: 10.1111/pbi.14005.
URL
|
| [5] |
Ohashi-Ito K, Fukuda H. Functional mechanism of bHLH complexes during early vascular development[J]. Current Opinion in Plant Biology, 2016, 33:42-47.doi: 10.1016/j.pbi.2016.06.003.
pmid: 27314622
|
| [6] |
Guo X J, Wang J R. Global identification,structural analysis and expression characterization of bHLH transcription factors in wheat[J]. BMC Plant Biology, 2017, 17(1):90.doi: 10.1186/s12870-017-1038-y.
URL
|
| [7] |
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress[J]. Biochemical and Biophysical Research Communications, 2018, 503(2):397-401.doi: 10.1016/j.bbrc.2018.07.123.
pmid: 30057319
|
| [8] |
Wang Z, Yang Z R, Li F G. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton[J]. Plant Biotechnology Journal, 2019, 17(9):1706-1722.doi: 10.1111/pbi.13167.
pmid: 31111642
|
| [9] |
Carey-Fung O, O'Brien M, Beasley J T, Johnson A A T. A model to incorporate the bHLH transcription factor OsIRO3 within the rice iron homeostasis regulatory network[J]. International Journal of Molecular Sciences, 2022, 23(3):1635.doi: 10.3390/ijms23031635.
URL
|
| [10] |
Das A K, Hao L. Functional characterization of ZmbHLH121,a bHLH transcription factor,focusing on Zea mays kernel development[J]. Gene Reports, 2022, 28:101645.doi: 10.1016/j.genrep.2022.101645.
URL
|
| [11] |
Zhang T T, Lyu W, Zhang H S, Ma L, Li P H, Ge L, Li G. Genome-wide analysis of the basic Helix-Loop-Helix(bHLH)transcription factor family in maize[J]. BMC Plant Biology, 2018, 18(1):235.doi: 10.1186/s12870-018-1441-z.
|
| [12] |
Gong W F, Du X M, Jia Y H, Pan Z E. Color cotton and its utilization in China[M]//Cotton Fiber:Physics,Chemistry and Biology. Cham: Springer International Publishing,2018:117-132.doi: 10.1007/978-030-00871-0_6.
|
| [13] |
Liu B L, Guan X Y, Liang W H, Chen J D, Fang L, Hu Y, Guo W Z, Rong J K, Xu G H, Zhang T Z. Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid[J]. BMC Genomics, 2018, 19(1):162.doi: 10.1186/s12864-018-4543-y.
pmid: 29471803
|
| [14] |
Zhang B P, Chopra D, Schrader A, Hülskamp M. Evolutionary comparison of competitive protein-complex formation of MYB,bHLH,and WDR proteins in plants[J]. Journal of Experimental Botany, 2019, 70(12):3197-3209.doi: 10.1093/jxb/erz155.
URL
|
| [15] |
Yan Q, Liu H S, Yao D, Li X, Chen H, Dou Y, Wang Y, Pei Y, Xiao Y H. The basic/helix-loop-helix protein family in Gossypium:reference genes and their evolution during tetraploidization[J]. PLoS One, 2015, 10(5):e0126558.doi: 10.1371/journal.pone.0126558.
|
| [16] |
Hu H Y, He X, Tu L L, Zhu L F, Zhu S T, Ge Z H, Zhang X L. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like[J]. The Plant Journal, 2016, 88(6):921-935.doi: 10.1111/tpj.13273.
pmid: 27419658
|
| [17] |
Xia X C, Hu Q Q, Li W, Chen Y, Han L H, Tao M, Wu W Y, Li X B, Huang G Q. Cotton( Gossypium hirsutum)JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation[J]. Plant Cell,Tissue and Organ Culture(PCTOC), 2018, 133(2):249-262.doi: 10.1007/s11240-018-1378-9.
|
| [18] |
Xiao G H, He P, Zhao P, Liu H, Zhang L, Pang C Y, Yu J N. Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation[J]. Journal of Experimental Botany, 2018, 69(18):4323-4337.doi: 10.1093/jxb/ery219.
URL
|
| [19] |
Lu R, Zhang J, Liu D, Wei Y L, Wang Y, Li X B. Characterization of bHLH/HLH genes that are involved in brassinosteroid(BR)signaling in fiber development of cotton( Gossypium hirsutum)[J]. BMC Plant Biology, 2018, 18(1):304.doi: 10.1186/s12870-018-1523-y.
|
| [20] |
Liu Z H, Chen Y, Wang N N, Chen Y H, Wei N, Lu R, Li Y, Li X B. A basic helix loop helix protein(GhFP1)promotes fibre elongation of cotton( Gossypium hirsutum)by modulating brassinosteroid biosynthesis and signalling[J]. New Phytologist, 2020, 225(6):2439-2452.doi: 10.1111/nph.16301.
URL
|
| [21] |
Li M Y, Hao P B, Zhang J J, Yang X, Wu A M, Zhang M, Wei H L, Fu X K, Wang H T, Yu S X. A comprehensive identification and function analysis of the ATBS1 Interacting Factors(AIFs)gene family of Gossypium species in fiber development and under multiple stresses[J]. Industrial Crops and Products, 2021, 171:113853.doi: 10.1016/j.indcrop.2021.113853.
URL
|
| [22] |
MacMillan C P, Birke H, Chuah A, Brill E, Tsuji Y, Ralph J, Dennis E S, Llewellyn D, Pettolino F A. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls[J]. BMC Genomics, 2017, 18(1):539.doi: 10.1186/s12864-017-3902-4.
pmid: 28720072
|
| [23] |
Gao Z Y, Sun W J, Wang J, Zhao C Y, Zuo K J. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers[J]. Plant Science, 2019, 286:7-16.doi: 10.1016/j.plantsci.2019.05.020.
pmid: 31300144
|
| [24] |
Sun H R, Hao P B, Gu L J, Cheng S S, Wang H T, Wu A M, Ma L, Wei H L, Yu S X. Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton[J]. Plant Science, 2020, 293:110395.doi: 10.1016/j.plantsci.2019.110395.
URL
|
| [25] |
Liu W Y, Lyu Y J, Li X Y, Feng Z Q, Wang L C. Comparative transcriptome analysis uncovers cell wall reorganization and repressed cell division during cotton fiber initiation[J]. BMC Developmental Biology, 2021, 21(1):15.doi: 10.1186/s12861-021-00247-3.
pmid: 34715791
|
| [26] |
Zou X Y, Liu A Y, Zhang Z, et al. Co-expression network analysis and hub gene selection for high-quality fiber in upland cotton( Gossypium hirsutum)using RNA sequencing analysis[J]. Genes, 2019, 10(2):119.doi: 10.3390/genes10020119.
URL
|
| [27] |
Shangguan X X, Yang C Q, Zhang X F, Wang L J. Functional characterization of a basic helix-loop-helix(bHLH)transcription factor GhDEL65 from cotton( Gossypium hirsutum)[J]. Physiologia Plantarum, 2016, 158(2):200-212.doi: 10.1111/ppl.12450.
URL
|
| [28] |
Wang G, Zhao G H, Jia Y H, Du X M. Identification and characterization of cotton genes involved in fuzz-fiber development[J]. Journal of Integrative Plant Biology, 2013, 55(7):619-630.doi: 10.1111/jipb.12072.
|
| [29] |
严倩. 棉花棕色纤维基因Lc1的图位克隆及原花色素合成和纤维棕色呈色的调控[D]. 重庆: 西南大学,2016:1-9.
|
|
Yan Q. Map-based cloning of dark brown fiber gene Lc1,and the regulation of proanthocyanidin biosynthesis and brown fiber coloration[D]. Chongqing: Southwest University,2016:1-9.
|
| [30] |
Liu Y J, Hou H, Jiang X L, Wang P Q, Dai X L, Chen W, Gao L P, Xia T. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB bHLH WD40 ternary complexes[J]. International Journal of Molecular Sciences, 2018, 19(6):1686.doi: 10.3390/ijms19061686.
URL
|
| [31] |
Shangguan X, Yang Q, Wu X, Cao J. Function analysis of a cotton R2R3 MYB transcription factor GhMYB3 in regulating plant trichome development[J]. Plant Biology, 2021, 23(6):1118-1127.doi: 10.1111/plb.13299.
pmid: 34396658
|
| [32] |
Yan Q, Wang Y, Li Q, Zhang Z S, Ding H, Zhang Y, Liu H S, Luo M, Liu D X, Song W, Liu H F, Yao D, Ouyang X F, Li Y H, Li X, Pei Y, Xiao Y H. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality[J]. Plant Biotechnology Journal, 2018, 16(10):1735-1747.doi: 10.1111/pbi.12910.
URL
|
| [33] |
University S P S, Mikhailova A, Strygina K, Khlestkina E. The genes determining synthesis of pigments in cotton[J]. Biological Communications, 2019, 64(2):133-145.doi: 10.21638/spbu03.2019.205.
URL
|
| [34] |
Ke L P, Yu D L, Zheng H L, Xu Y H, Wu Y Q, Jiao J Y, Wang X L, Mei J, Cai F F, Zhao Y Y, Sun J, Zhang X L, Sun Y Q. Function deficiency of GhOMT1 causes anthocyanidins over-accumulation and diversifies fibre colours in cotton( Gossypium hirsutum)[J]. Plant Biotechnology Journal, 2022, 20(8):1546-1560.doi: 10.1111/pbi.13832.
URL
|
| [35] |
刘厚生. 棉花bHLH蛋白基因的克隆、表达及生物信息学分析[D]. 重庆: 西南大学,2014:27-39.
|
|
Liu H S. Cloning,expression and bioinformatic analysis of bHLH protein genes in cotton[D]. Chongqing: Southwest University,2014:27-39.
|
| [36] |
Wang Z Z, Rehman A, Jia Y H, Dai P H, He S P, Wang X Y, Li H G, Wang L R, Qayyum A, Peng Z, Du X M. Transcriptome and proteome profiling revealed the key genes and pathways involved in the fiber quality formation in brown cotton[J]. Gene, 2023, 868:147374.doi: 10.1016/j.gene.2023.147374.
URL
|
| [37] |
Zhao B, Cao J F, Hu G J, Chen Z W, Wang L Y, Shangguan X X, Wang L J, Mao Y B, Zhang T Z, Wendel J F, Chen X Y. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation[J]. New Phytologist, 2018, 218(3):1061-1075.doi: 10.1111/nph.15063.
pmid: 29465754
|
| [38] |
Wu H H, Ren Z Y, Zheng L, Guo M Z, Yang J Y, Hou L Y, Qanmber G, Li F G, Yang Z R. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton[J]. The Crop Journal, 2021, 9(5):1049-1059.doi: 10.1016/j.cj.2020.10.014.
URL
|
| [39] |
Meng C M, Zhang T Z, Guo W Z. Molecular cloning and characterization of a novel Gossypium hirsutum L.bHLH gene in response to ABA and drought stresses[J]. Plant Molecular Biology Reporter, 2009, 27(3):381-387.doi: 10.1007/s11105-009-0112-5.
URL
|
| [40] |
|
|
Sun N, Wang J, Zuo K J. Cloning and functional analysis of GhbHLH4 gene from upland cotton[J]. Journal of Agricultural Science and Technology, 2014, 16(3):29-35.
|
| [41] |
光杨其, 宋桂成, 张金凤, 王晓楠, 唐灿明. 1个新棉花bHLH类基因 GhbHLH130的克隆及表达分析[J]. 棉花学报, 2014, 26(4):363-370.doi: 10.11963/cs140414.
|
|
Guang Y Q, Song G C, Zhang J F, Wang X N, Tang C M. Molecular cloning and expression analysis of GhbHLH130,encoding a novel bHLH transcription factor in upland cotton(Gossypium hirsutum L.)[J]. Cotton science, 2014, 26(4):363-370.
|
| [42] |
|
|
Gao L H, Liu B X, Li J B, Wu Y M, Tang Y X. Cloning and function analysis of bHLH transcription factor gene GhMYC4 from Gossypium hirsutism L.[J]. Journal of Agricultural Science and Technology, 2016, 18(5):33-41.
doi: 10.13304/j.nykjdb.2015.729
|
| [43] |
|
|
Zhen J B, Cai X, Jiang Z X, Liu L L, Zhang J H, Zhang X Y, Chi J N. Molecular cloning and expression analysis of GhbHLH from upland cotton[J]. Molecular Plant Breeding, 2017, 15(4):1233-1239.
|
| [44] |
Ren W, Wang Q, Chen L, Ren Y P. Transcriptome and metabolome analyses of salt stress response in cotton( Gossypium hirsutum)seed pretreated with NaCl[J]. Agronomy, 2022, 12(8):1849.doi: 10.3390/agronomy12081849.
|
| [45] |
Chen E Y, Yang X B, Liu R E, Zhang M K, Zhang M, Zhou F, Li D X, Hu H Y, Li C W. GhBEE3-Like gene regulated by brassinosteroids is involved in cotton drought tolerance[J]. Frontiers in Plant Science, 2022, 13:1019146.doi: 10.3389/fpls.2022.1019146.
URL
|
| [46] |
Zhang H C, Zhang W W, Jian G L, Qi F J, Si N. The genes involved in the protective effects of phytohormones in response to Verticillium dahliae infection in Gossypium hirsutum[J]. Journal of Plant Biology, 2016, 59(2):194-202.doi: 10.1007/s12374-016-0568-4.
URL
|
| [47] |
范强. GhCOI1和GhMYC2基因对棉花黄萎病抗性的VIGS分析[D]. 兰州: 甘肃农业大学,2017:45-46.
|
|
Fan Q. Analysis of GhCOI1 and GhMYC2 by VIGS in the cotton resistance against Verticillium wilt[D]. Lanzhou: Gansu Agricultural University,2017:45-46.
|
| [48] |
He X, Zhu L F, Wassan G M, Wang Y J, Miao Y H, Shaban M, Hu H Y, Sun H, Zhang X L. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171[J]. Molecular Plant Pathology, 2018, 19(4):896-908.doi: 10.1111/mpp.12575.
URL
|
| [49] |
Zhou Y, Sun L Q, Wassan G M, He X, Shaban M, Zhang L, Zhu L F, Zhang X L. GbSOBIR1 confers Verticillium wilt resistance by phosphorylating the transcriptional factor GbbHLH171 in Gossypium barbadense[J]. Plant Biotechnology Journal, 2019, 17(1):152-163.doi: 10.1111/pbi.12954.
pmid: 29797390
|
| [50] |
|
|
Zhao G D. Molecular mechanism of GhbHLH122 affecting ethylene biosynthesis and regulating resistance to Fusarium wilt in cotton[D]. Tai'an: Shandong Agricultural University,2022:38-66.
|
| [51] |
Zhang J, Guo M Z, Wu H H, Hou L Y, Li S D, Chen G Q, Liu L, Liu Z, Lu L L, Kabir N, Yang Z R. GhPAS1,a bHLH transcription factor in upland cotton( Gossypium hirsutum),positively regulates Verticillium dahlia resistance[J]. Industrial Crops and Products, 2023, 192:116077.doi: 10.1016/j.indcrop.2022.116077.
URL
|
| [52] |
Ju F Y, Liu S D, Zhang S P, Ma H J, Chen J, Ge C W, Shen Q, Zhang X M, Zhao X H, Zhang Y J, Pang C Y. Transcriptome analysis and identification of genes associated with fruiting branch internode elongation in upland cotton[J]. BMC Plant Biology, 2019, 19(1):415.doi: 10.1186/s12870-019-2011-8.
pmid: 31590649
|
| [53] |
朱继杰, 赵红霞, 王士杰, 贾晓昀, 李妙, 王国印. 脱叶催熟剂喷施时间对不同部位棉铃发育和纤维品质的影响[J]. 棉花学报, 2023, 35(2):117-127.doi: 10.11963/cs20230001.
|
|
Zhu J J, Zhao H X, Wang S J, Jia X Y, Li M, Wang G Y. Effects of the spraying time of defoliation and ripening agent on cotton boll development and fiber quality at different fruiting branches[J]. Cotton Science, 2023, 35(2):117-127.
|
| [54] |
Wang Z J, Li Y J, Zhu Q H, Tian L W, Liu F, Zhang X Y, Sun J. Transcriptome profiling provides new insights into the molecular mechanism underlying the sensitivity of cotton varieties to mepiquat chloride[J]. International Journal of Molecular Sciences, 2022, 23(9):5043.doi: 10.3390/ijms23095043.
URL
|
| [55] |
Li Y Q, Qin T F, Wei C Y, Sun J L, Dong T, Zhou R Y, Chen Q J, Wang Q L. Using transcriptome analysis to screen for key genes and pathways related to cytoplasmic male sterility in cotton( Gossypium hirsutum L.)[J]. International Journal of Molecular Sciences, 2019, 20(20):5120.doi: 10.3390/ijms20205120.
URL
|
| [56] |
Chen E Y, Wang X Q, Gong Q, et al. A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level[J]. Gene, 2017, 627:49-56.doi: 10.1016/j.gene.2017.06.007.
URL
|
| [57] |
Ma D, Hu Y, Yang C Q, et al. Genetic basis for glandular trichome formation in cotton[J]. Nature Communications, 2016,7:10456.doi: 10.1038/ncomms10456.
|
| [58] |
刘永明, 关淑仙, 王文静, 任茂智, 李付广. 棉籽作畜禽饲料的营养价值、脱毒方法及应用研究进展[J]. 中国棉花, 2023, 50(9):35-41.doi: 10.11963/cc20230076.
|
|
Liu Y M, Guan S X, Wang W J, Ren M Z, Li F G. Nutritional value,detoxification methods,and application research of cottonseed as animal feed[J]. China Cotton, 2023, 50(9):35-41.
|
| [59] |
Min L, Hu Q, Li Y Y, Xu J, Ma Y Z, Zhu L F, Yang X Y, Zhang X L. Leafy cotyledon1-casein kinase i-tcp15-phytochrome interacting factor 4 network regulates somatic embryogenesis by regulating auxin homeostasis[J]. Plant Physiology, 2015, 169(4):2805-2821.doi: 10.1104/pp.15.01480.
URL
|
| [60] |
Guo H H, Guo H X, Zhang L, Fan Y J, Wu J F, Tang Z M, Zhang Y, Fan Y P, Zeng F C. Dynamic transcriptome analysis reveals uncharacterized complex regulatory pathway underlying genotype-recalcitrant somatic embryogenesis transdifferentiation in cotton[J]. Genes, 2020, 11(5):519.doi: 10.3390/genes11050519.
URL
|
| [61] |
Cao A P, Zheng Y Y, Yu Y, Wang X W, Shao D N, Sun J, Cui B M. Comparative transcriptome analysis of SE initial dedifferentiation in cotton of different SE capability[J]. Scientific Reports, 2017, 7(1):8583.doi: 10.1038/s41598-017-08763-8.
pmid: 28819177
|
| [62] |
Sun R B, Tian R P, Ma D, Wang S H, Liu C L. Comparative transcriptome study provides insights into acquisition of embryogenic ability in upland cotton during somatic embryogenesis[J]. Journal of Cotton Research, 2018, 1(1):9.doi: 10.1186/s42397-018-0010-1.
|
| [63] |
Lu C, Wei Y X, Meng Z G, Liu Y M, Ali A M, Liu Q F, Abbas M, Wang Y N, Liang C Z, Wang Y, Zhang R. Overexpression of LT,an oncoprotein derived from the polyomavirus SV40,promotes somatic embryogenesis in cotton[J]. Genes, 2022, 13(5):853.doi: 10.3390/genes13050853.
URL
|
| [64] |
Deng J W, Sun W N, Zhang B Y, Sun S M, Xia L J, Miao Y H, He L R, Lindsey K, Yang X Y, Zhang X L. GhTCE1-GhTCEE1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton[J]. The Plant Cell, 2022, 34(11):4554-4568.doi: 10.1093/plcell/koac252.
pmid: 35972347
|