| [1] |
|
|
Wang J Y, Zhang N, Si H J, Wu J H. Cloning and expression analysis of GhGME gene from Gossypium hirsuturm L.[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(1):12-17.
|
| [2] |
|
|
Yang X M. Performance research and product development of MB703 fine cotton in Xinjiang[D]. Shanghai: Donghua University,2022.
|
| [3] |
|
|
Shangguan X X, Cao J F, Yang Q L, Wu X. Research progress on the molecular mechanism of cotton fiber development[J]. Cotton Science, 2022, 34(1):33-47.
|
| [4] |
Liu J, Li W J, Wu G, Ali K. An update on evolutionary,structural,and functional studies of receptor-like kinases in plants[J]. Frontiers in Plant Science, 2024,15:1305599.doi: 10.3389/fpls.2024.1305599.
|
| [5] |
|
|
Geng Y F, Lyu M F. Progress on cysteine-rich receptor-like kinase family in plants[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12):2303-2312.
doi: 10.3969/j.issn.1004-1524.2020.12.22
|
| [6] |
|
|
Zheng C, Li D G, Bai W. Advances on cysteine-rich receptor-like kinases in plants[J]. Biotechnology Bulletin, 2016, 32(11):10-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.002
|
| [7] |
|
|
Liu R T, Zhang Y, Fan X C, Jiang J F, Sun L, Liu C H. Progress on the function of plant cysteine-rich receptor-like kinase in response to biotic and abiotic stresses[J]. Molecular Plant Breeding, 2022, 20(15):5029-5035.
|
| [8] |
|
|
Zhang Z Q. Identification of CRK gene family in upland cotton and functional analysis of GhCRK25[D]. Nanjing: Nanjing Agricultural University,2018.
|
| [9] |
|
|
Wang W S, Wang S F, Ma Z Y, Zhang G Y. Identification of BAC clones related with Verticillium wilt resistance gene and construction of sub-clone library[J]. Acta Agriculturae Boreali-Sinica, 2006, 21(S1):147-150.
|
| [10] |
Arellano-Villagómez F C, Guevara-Olvera L, Zuñiga-Mayo V M, Cerbantez-Bueno V E, Verdugo-Perales M, Medina H R, De Folter S, Acosta-García G. Arabidopsis cysteine-rich receptor-like protein kinase CRK33 affects stomatal density and drought tolerance[J]. Plant Signaling & Behavior, 2021, 16(6):1905335.doi: 10.1080/15592324.2021.1905335.
|
| [11] |
Zhao J, Sun Y H, Li X Y, Li Y Z. CYSTEINE-RICH RECEPTOR-LIKE KINASE5 (CRK5) and CRK22 regulate the response to Verticillium dahliae toxins[J]. Plant Physiology, 2022, 190(1):714-731.doi: 10.1093/plphys/kiac277.
pmid: 35674361
|
| [12] |
|
|
Liu H L.Arabidopsis receptor-like kinase CRK26 is involved in the regulation of iron-deficiency[D]. Kaifeng: Henan University,2024.
|
| [13] |
|
|
Hu H. Preliminary study on biological function of CDPK-related kinase CRK8 in Arabidopsis[D]. Chengdu: Southwest Jiaotong University,2022.
|
| [14] |
|
|
Nie C. Preliminary study of CRK8 gene from Arabidopsis thaliana in regualtion plant tolerance to cadmium and zinc stress[D]. Chengdu: Southwest Jiaotong University,2023.
|
| [15] |
Guo F L, Wu T C, Shen F D, Xu G B, Qi H J, Zhang Z Y. The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat[J]. Journal of Experimental Botany, 2021, 72(20):6904-6919.doi: 10.1093/jxb/erab328.
URL
|
| [16] |
|
|
Zhong J W. Identification of the CRK gene family and the functional characterization of ZmCRK27[D]. Wuhan: Huazhong Agricultural University,2020.
|
| [17] |
Ye T T, Wang H J, An C J, Tu H F, Zhang L Q, Hu D, Xiong H Y, Xiong L Z. An expanded cysteine-rich receptor-like kinase gene cluster functionally differentiates in drought,cold,heat,and pathogen stress responses in rice[J]. Plant Biotechnology Journal, 2024, 22(10):2672-2674.doi: 10.1111/pbi.14381.
URL
|
| [18] |
Mou S L, Meng Q Q, Gao F, Zhang T T, He W H, Guan D Y, He S L. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper[J]. BMC Plant Biology, 2021, 21(1):382.doi: 10.1186/s12870-021-03150-y.
|
| [19] |
Zhao X H, Qu D H, Wang L, Gao Y H, An N N, Wang A P, Li Y X, Yang J J, Wu F L, Su H Y. Genome-wide identification of cysteine-rich receptor-like kinases in sweet cherry reveals that PaCRK1 enhances sweet cherry resistance to salt stress[J]. Plant Cell Reports, 2022, 41(10):2037-2088.doi: 10.1007/s00299-022-02907-5.
|
| [20] |
Li T G, Zhang D D, Zhou L, Kong Z Q, Hussaini A S, Wang D, Li J J, Short D P G, Dhar N, Klosterman S J, Wang B L, Yin C M, Subbarao K V, Chen J Y, Dai X F. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in Plant Science, 2018,9:1266.doi: 10.3389/fpls.2018.01266.
|
| [21] |
|
|
Li S M. Genetic analysis of fiber length and identification of candidate genes in Gossypium hirsutum L. × Gossypium barbadense L.backcross populations[D]. Urumqi: Xinjiang Agricultural University, 2022.
|
| [22] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCtmethod[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
| [23] |
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server[J]. Nucleic Acids Research, 2014, 42(W1):W320-W324.doi: 10.1093/nar/gku316.
|
| [24] |
|
|
Zhao Y Y. Functional verification of salt stress-responsive genes GhMYB73 and GhSCL4[D]. Wuhan: Huazhong Agricultural University, 2020.
|
| [25] |
Fang L, Tian R P, Li X H, Chen J D, Wang S, Wang P, Zhang T Z. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments[J]. BMC Genomics, 2014, 15(1):838.doi: 10.1186/1471-2164-15-838.
|
| [26] |
Tang K, Liu J Y. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers[J]. Acta Biochimica et Biophysica Sinica, 2017, 49(1):33-43.doi: 10.1093/abbs/gmw113.
URL
|
| [27] |
Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development[J]. Genetics, 2008, 180(2):811-820.doi: 10.1534/genetics.108.093070.
pmid: 18780729
|
| [28] |
Hu H Y, He X, Tu L L, Zhu L F, Zhu S T, Ge Z H, Zhang X L. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like[J]. The Plant Journal, 2016, 88(6):921-935.doi: 10.1111/tpj.13273.
URL
|
| [29] |
|
|
Shi Z K, Zhang Y X, Song Z Y, Zhang K M, Li Y H, Li F. Drought resistance function identification of chrysanthemum CmMYB15-like gene[J]. Journal of Plant Genetic Resources, 2025, 26(2):369-379.
|
| [30] |
|
|
Li C Y, Zumu Remu T, Li X R, Yang Y, Yu Y H, Li B. Research progress on MYB transcription factors in cotton[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(S1):11-17.
doi: 10.7668/hbnxb.20194385
|