| [1] |
Abdelaziz A M, Hashem A H, El-Sayyad G S, El-Wakil D A, Selim S, Alkhalifah D H M, Attia M S. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria[J]. Tropical Plant Pathology, 2023, 48(2):105-127.doi: 10.1007/s40858-022-00544-7.
|
| [2] |
程妍, 曲玮茵, 郑文博, 杨媚, 廖美德, 周而勋, 舒灿伟. 克里本类芽孢杆菌PS04诱导水稻抗病相关基因的表达分析[J]. 华北农学报, 2020, 35(2):203-209.doi: 10.7668/hbnxb.20190312.
|
|
Cheng Y, Qu W Y, Zheng W B, Yang M, Liao M D, Zhou E X, Shu C W. Expression analysis of disease resistance-related genes in rice plant induced by Paenibacillus kribbensis PS04[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2):203-209.
|
| [3] |
贺丹, 李鹏, 赵珅, 姜虹, 田苗, 赵婷婷, 仁安, 周彦丽, 李明昊, 任毅. 多黏类芽孢杆菌的生防机制研究进展[J]. 江苏农业科学, 2023, 51(8):1-8.doi: 10.15889/j.issn.1002-1302.2023.08.001.
|
|
He D, Li P, Zhao K, Jiang H, Tian M, Zhao T T, Ren A, Zhou Y L, Li M H, Ren Y. Research progress on biocontrol mechanism of Paenibacillus polymyxa[J]. Jiangsu Agricultural Sciences, 2023, 51(8):1-8.
|
| [4] |
|
|
Zhang S C, Zhang Y L, Tan X D, Guo R J, Li S D, Luo M. Screening of antagonistic Streptomyces 26B and its efficacy on the control of soft rot disease of Chinese cabbage in soil with different water content[J]. Chinese Journal of Biological Control, 2023, 39(1):157-166.
|
| [5] |
赵卫松, 郭庆港, 董丽红, 王培培, 张晓云, 苏振贺, 鹿秀云, 李社增, 马平. L-脯氨酸对枯草芽胞杆菌NCD-2菌株生物膜形成的影响[J]. 植物病理学报, 2021, 51(1):115-122.doi: 10.13926/j.cnki.apps.000513.
|
|
Zhao W S, Guo Q G, Dong L H, Wang P P, Zhang X Y, Su Z H, Lu X Y, Li S Z, Ma P. Effect of L-proline on biofilm formation of Bacillus subtilis NCD-2[J]. Acta Phytopath-ologica Sinica, 2021, 51(1):115-122.
|
| [6] |
|
|
Wan W K. Study on screening and colonization ability of Bacillus in response to recruitment of maize root exudates[D]. Hefei: Anhui Agricultural University,2021.
|
| [7] |
Silva H S A, da Silva Romeiro R, Mounteer A. Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents[J]. Journal of Phytopathology, 2003, 151(1):42-46.doi: 10.1046/j.1439-0434.2003.00678.x.
|
| [8] |
Zhou J Y, Wang M, Sun Y M, Gu Z C, Wang R R, Saydin A, Shen Q R, Guo S W. Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution[J]. Toxins, 2017, 9(3):100.doi: 10.3390/toxins9030100.
URL
|
| [9] |
|
|
Wang H X, Liu Z P, Wang Z G, Xu W H, Guo R X. Colonization and growth promotion of three Bacillus strains in rice rhizosphere and their survival in soil[J]. Journal of Ecology and Rural Environment, 2019, 35(7):892-899.
|
| [10] |
Wang L T, Lee F L, Tai C J, Kasai H. Comparison of gyrB gene sequences,16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(8):1846-1850.doi: 10.1099/ijs.0.64685-0.
|
| [11] |
曲远航, 刘天聪, 鹿秀云, 李社增, 郭庆港, 马平. 菌糠对棉花黄萎病及棉花根际微生物群落组成的影响[J]. 棉花学报, 2023, 35(4):274-287.doi: 10.11963/cs20220039.
|
|
Qu Y H, Liu T C, Lu X Y, Li S Z, Guo Q G, Ma P. Effects of spent mushroom substrate on cotton Verticillium wilt and the cotton rhizosphere microbiome[J]. Cotton Science, 2023, 35(4):274-287.
|
| [12] |
Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue B P A. Screening for novel biocontrol agents applicable in plant disease management-a review[J]. Biological Control, 2020,144:104240.doi: 10.1016/j.biocontrol.2020.104240.
|
| [13] |
Upadhyay S K, Srivastava A K, Rajput V D, Chauhan P K, Bhojiya A A, Jain D, Chaubey G, Dwivedi P, Sharma B, Minkina T. Root exudates:mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production[J]. Frontiers in Microbiology, 2022,13:916488.doi: 10.3389/fmicb.2022.916488.
|
| [14] |
Knights H E, Jorrin B, Haskett T L, Poole P S. Deciphering bacterial mechanisms of root colonization[J]. Environmental Microbiology Reports, 2021, 13(4):428-444.doi: 10.1111/1758-2229.12934.
pmid: 33538402
|
| [15] |
Feng H C, Fu R X, Hou X Q, Lyu Y, Zhang N, Liu Y P, Xu Z H, Miao Y Z, Krell T, Shen Q R, Zhang R F. Chemotaxis of beneficial rhizobacteria to root exudates:the first step towards root microbe rhizosphere interactions[J]. International Journal of Molecular Sciences, 2021, 22(13):6655.doi: 10.3390/ijms22136655.
URL
|
| [16] |
de Weert S, Vermeiren H, Mulders I H M, Kuiper I, Hendrickx N, Bloemberg G V, Vanderleyden J, De Mot R, Lugtenberg B J J. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions, 2002, 15(11):1173-1180.doi: 10.1094/mpmi.2002.15.11.1173.
URL
|
| [17] |
Feng H C, Zhang N, Du W B, Zhang H H, Liu Y P, Fu R X, Shao J H, Zhang G S, Shen Q R, Zhang R F. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Molecular Plant-Microbe Interactions, 2018, 31(10):995-1005.doi: 10.1094/mpmi-01-18-0003-r.
URL
|
| [18] |
Wallner A, Klonowska A, Guigard L, King E, Rimbault I, Ngonkeu E, Nguyen P, Béna G, Moulin L. Comparative genomics and transcriptomic response to root exudates of six rice root-associated Burkholderia sensu lato species[J]. Peer Community Journal, 2023,3:e25.doi: 10.24072/pcjournal.252.
|
| [19] |
Zhalnina K, Louie K B, Hao Z, Mansoori N, Da Rocha U N, Shi S J, Cho H, Karaoz U, Loqué D, Bowen B P, Firestone M K, Northen T R, Brodie E L. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4):470-480.doi: 10.1038/s41564-018-0129-3.
pmid: 29556109
|
| [20] |
De Souza R S C, Armanhi J S L, de Brito Damasceno N, Imperial J, Arruda P. Genome sequences of a plant beneficial synthetic bacterial community reveal genetic features for successful plant colonization[J]. Frontiers in Microbiology, 2019,10:1779.doi: 10.3389/fmicb.2019.01779.
|
| [21] |
Xiong Q, Liu D, Zhang H H, Dong X Y, Zhang G S, Liu Y P, Zhang R F. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility[J]. Applied Microbiology and Biotechnology, 2020, 104(16):7177-7185.doi: 10.1007/s00253-020-10713-w.
pmid: 32621125
|
| [22] |
Weigh K V, Batista B D, Hoang H, Dennis P G. Characterisation of soil bacterial communities that exhibit chemotaxis to root exudates from phosphorus-limited plants[J]. Microorganisms, 2023, 11(12):2984.doi: 10.3390/microorganisms11122984.
URL
|
| [23] |
Carvalhais L C, Dennis P G, Fedoseyenko D, Hajirezaei M R, Borriss R, von Wirén N. Root exudation of sugars,amino acids,and organic acids by maize as affected by nitrogen,phosphorus,potassium,and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1):3-11.doi: 10.1002/jpln.201000085.
URL
|
| [24] |
Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42[J]. Environmental Science and Pollution Research, 2018, 25(30):29910-29920.doi: 10.1007/s11356-017-0469-1.
|
| [25] |
Liu Y P, Feng H C, Fu R X, Zhang N, Du W B, Shen Q R, Zhang R F. Induced root-secreted D-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner[J]. Applied Microbiology and Biotechnology, 2020, 104(2):785-797.doi: 10.1007/s00253-019-10265-8.
|
| [26] |
Amaya-Gómez C V, Porcel M, Mesa-Garriga L, Gómez-Álvarez M I. A framework for the selection of plant growth-promoting rhizobacteria based on bacterial competence mechanisms[J]. Applied and Environmental Microbiology, 2020, 86(14):e00760-20.doi: 10.1128/aem.00760-20.
|
| [27] |
Kawasaki A, Dennis P G, Forstner C, Raghavendra A K H, Mathesius U, Richardson A E, Delhaize E, Gilliham M, Watt M, Ryan P R. Manipulating exudate composition from root apices shapes the microbiome throughout the root system[J]. Plant Physiology, 2021, 187(4):2279-2295.doi: 10.1093/plphys/kiab337.
pmid: 34618027
|
| [28] |
Jin X, Bai Y, Khashi U Rahman M, Kang X J, Pan K, Wu F Z, Pommier T, Zhou X G, Wei Z. Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against Fusarium wilt[J]. iMeta, 2022, 1(3):e37.doi: 10.1002/imt2.37.
URL
|
| [29] |
Deng Z H, Wang J W, He Y H, Tu Z, Tian F, Li H J, Wu Z S, An X F. Biochar-based Bacillus subtilis inoculant for enhancing plants disease prevention:microbiota response and root exudates regulation[J]. Biochar, 2023, 5(1):81.doi: 10.1007/s42773-023-00284-0.
|