[1] |
|
|
Wang H W, Li Y, Cui C, Zhao B, Zhu S J, Hao S Y. Analysis of photosynthetic characteristics and yield-related factors of flag leaves in F1 generation of different wheat hybrid combinations[J]. Tianjin Agricultural Sciences, 2022, 28(9):5-8,38.
|
[2] |
谢美娟, 曹高燚, 包曙光, 李明, 丁博, 陈小强, 谢晓东, 王俊斌. 植物钙依赖蛋白激酶的结构、表达特性及其生物学功能[J]. 分子植物育种, 2023, 21(19):6413-6421.doi: 10.13271/j.mpb.021.006413.
|
|
Xie M J, Cao G Y, Bao S G, Li M, Ding B, Chen X Q, Xie X D, Wang J B. Structure,expression and biological functions of calcium-dependent protein kinases in plants[J]. Molecular Plant Breeding, 2023, 21(19):6413-6421.
|
[3] |
Atif R M, Shahid L, Waqas M, Ali B, Rashid M A R, Azeem F, Nawaz M A, Wani S H, Chung G. Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants[J]. International Journal of Molecular Sciences, 2019, 20(21):5298.doi: 10.3390/ijms20215298.
|
[4] |
Kong H, Hou M J, Ma B, Xie Z S, Wang J M, Zhu X X. Calcium-dependent protein kinase GhCDPK4 plays a role in drought and abscisic acid stress responses[J]. Plant Science, 2023, 332:111704.doi: 10.1016/j.plantsci.2023.111704.
|
[5] |
Corratg-Faillie C, Ronzier E, Sanchez F, Prado K, Kim J H, Lanciano S, Leonhardt N, Lacombe B, Xiong T C. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33[J]. FEBS Letters, 2017, 591(13):1982-1992.doi: 10.1002/1873-3468.12687.
|
[6] |
Chen D H, Liu H P, Li C L. Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis[J]. Plant Molecular Biology, 2019, 99(1):113-122.doi: 10.1007/s11103-018-0805-y.
|
[7] |
Zhao Y L, Du H W, Wang Y K, Wang H L, Yang S Y, Li C H, Chen N, Yang H, Zhang Y H, Zhu Y L, Yang L Y, Hu X L. The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize[J]. Journal of Integrative Plant Biology, 2021, 63(3):510-527.doi: 10.1111/jipb.13056.
|
[8] |
Wei S Y, Hu W, Deng X M, Zhang Y Y, Liu X D, Zhao X D, Luo Q C, Jin Z Y, Li Y, Zhou S Y, Sun T, Wang L Z, Yang G X, He G Y. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility[J]. BMC Plant Biology, 2014, 14(1):133.doi: 10.1186/1471-2229-14-133.
|
[9] |
赵婉莹. 普通小麦钙依赖蛋白激酶基因TaCDPK1的抗旱功能研究[D]. 杨凌: 西北农林科技大学, 2018.
|
|
Zhao W Y. Study on drought resistance function of calcium-dependent protein kinase gene TaCDPK1 in common wheat[D]. Yangling: Northwest A&F University, 2018.
|
[10] |
Bin L H, Xu Z L, Chu Y Q, Yan Y, Nie X J, Song W N. Genome-wide analysis of calcium-dependent protein kinase (CDPK) family and functional characterization of TaCDPK25-U in response to drought stress in wheat[J]. Environmental and Experimental Botany, 2023, 209:105277.doi: 10.1016/j.envexpbot.2023.105277.
|
[11] |
Wang J B, Li Y, Wu T W, Miao C, Xie M J, Ding B, Li M, Bao S G, Chen X Q, Hu Z R, Xie X D. Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid[J]. Functional Plant Biology, 2021, 48(11):1087-1099.doi: 10.1071/FP20368.
pmid: 34551854
|
[12] |
次尔甲玛, 王宏鹏, 苟筱颖, 佟可心, 郭瑞超, 王俊斌, 曹高燚, 包曙光, 谢晓东, 陈小强. 大麦气孔发育相关基因 HvSPCH的克隆及初步功能分析[J]. 麦类作物学报, 2022, 42(10):1175-1181.doi: 10.7606/j.issn.1009-1041.2022.10.01.
|
|
Ci E, Wang H P, Gou X Y, Tong K X, Guo R C, Wang J B, Cao G Y, Bao S G, Xie X D, Chen X Q. Cloning and functional analysis of stomatal development related gene HvSPCH in barley[J]. Journal of Triticeae Crops, 2022, 42(10):1175-1181.
|
[13] |
魏琳, 张卫国, 任柏林, 丁博, 王俊斌, 李明, 陈帅君, 程乔林, 田秀平, 谢晓东. 小麦离体表皮上气孔对若干关键生理因子的应答反应[J]. 植物生理学报, 2015, 51(5):649-654.doi: 10.13592/j.cnki.ppj.2015.0142.
|
|
Wei L, Zhang W G, Ren B L, Ding B, Wang J B, Li M, Chen S J, Cheng Q L, Tian X P, Xie X D. Stomatal responses to several key physiological factors using epidermal strips of wheat[J]. Plant Physiology Journal, 2015, 51(5):649-654.
|
[14] |
Dekomah S D, Bi Z Z, Dormatey R, Wang Y H, Haider F U, Sun C, Yao P F, Bai J P. The role of CDPKs in plant development,nutrient and stress signaling[J]. Frontiers in Genetics, 2022, 13:996203.doi: 10.3389/fgene.2022.996203.
|
[15] |
Wernimont A K, Artz J D, Finerty P, Lin Y H, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, MacKenzie F, Chau I, Lourido S, Sibley L D, Hui R. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium[J]. Nature Structural & Molecular Biology, 2010, 17(5):596-601.doi: 10.1038/nsmb.1795.
|
[16] |
pmid: 34375534
|
[17] |
Li A L, Wang X, Leseberg C H, Jia J Z, Mao L. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat ( Triticum aestivum L.)[J]. Plant Signaling & Behavior, 2008, 3(9):654-656.doi: 10.4161/psb.3.9.5757.
|
[18] |
Geng S F, Zhao Y L, Tang L C, Zhang R Z, Sun M H, Guo H Z, Kong X Y, Li A L, Mao L. Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species:a case study in wheat ( Triticum aestivum L.)[J]. Gene, 2011, 475(2):94-103.doi: 10.1016/j.gene.2010.12.015.
|
[19] |
Yue J Y, Jiao J L, Wang W W, Wang H Z. The calcium-dependent protein kinase TaCDPK27 positively regulates salt tolerance in wheat[J]. International Journal of Molecular Sciences, 2022, 23(13):7341.doi: 10.3390/ijms23137341.
|
[20] |
Zhang L N, Wang L T, Chen X, Zhao L J, Liu X Y, Wang Y H, Wu G F, Xia C, Zhang L C, Kong X Y. The protein phosphatase 2C clade A TaPP2CA interact with calcium-dependent protein kinases,TaCDPK5/TaCDPK9-1,that phosphorylate TabZIP60 transcription factor from wheat ( Triticum aestivum L.)[J]. Plant Science, 2022, 321:111304.doi: 10.1016/j.plantsci.2022.111304.
|
[21] |
Zhang L N, Xie J Q, Wang L T, Si L B, Zheng S, Yang Y L, Yang H, Tian S G. Wheat TabZIP8,9,13 participate in ABA biosynthesis in NaCl-stressed roots regulated by TaCDPK9-1[J]. Plant Physiology and Biochemistry, 2020, 151:650-658.doi: 10.1016/j.plaphy.2020.03.039.
pmid: 32339912
|
[22] |
Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells[J]. Plant Biotechnology Journal, 2022, 20(1):143-157.doi: 10.1111/pbi.13701.
|