[1] |
Chatre L, Biard D S, Sarasin A, Ricchetti M. Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne syndrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(22):E2910—E2919.doi: 10.1073/pnas.1422264112.
|
[2] |
Malefo M B, Mathibela E O, Crampton B G, Makgopa M E. Investigating the role of Bowman-Birk serine protease inhibitor in Arabidopsis plants under drought stress[J]. Plant Physiology and Biochemistry, 2020, 149:286—293.doi: 10.1016/j.plaphy.2020.02.007.
pmid: 32097847
|
[3] |
Law R H P, Zhang Q W, McGowan S, Buckle A M, Silverman G A, Wong W, Rosado C J, Langendorf C G, Pike R N, Bird P I, Whisstock J C. An overview of the serpin superfamily[J]. Genome Biology, 2006, 7(5):216.doi: 10.1186/gb-2006-7-5-216.
pmid: 16737556
|
[4] |
pmid: 6996568
|
[5] |
Janciauskiene S, Moraga F, Lindgren S. C-terminal fragment of alpha1-antitrypsin activates human monocytes to a pro-inflammatory state through interactions with the CD36 scavenger receptor and LDL receptor[J]. Atherosclerosis, 2001, 158(1):41—51.doi: 10.1016/s0021-9150(00)00767-x.
pmid: 11500173
|
[6] |
Shan L, Li C L, Chen F, Zhao S Y, Xia G M. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat[J]. Plant,Cell & Environment, 2008, 31(8):1128—1137.doi: 10.1111/j.1365-3040.2008.01825.x.
|
[7] |
Shakeel M, Xu X X, De Mandal S, Jin F L. Role of serine protease inhibitors in insect-host-pathogen interactions[J]. Archives of Insect Biochemistry and Physiology, 2019, 102(3):e21556.doi: 10.1002/arch.21556.
|
[8] |
|
|
Hu C. Prokaryotic expression and purification of insecticidal proteins Bt and CpTI[D]. Lanzhou: Lanzhou University of Technology, 2023.
|
[9] |
|
|
Zhang C Y. The molecular mechanism of A rice bowman-birk trypsin inhibitor mediating the interaction between rice and magnaporthe oryzae[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
|
[10] |
Chen X J, Chen G, Li J P, Hao X Y, Tuerxun Z, Chang X C, Gao S Q, Huang Q S. A maize calcineurin B-like interacting protein kinase ZmCIPK42 confers salt stress tolerance[J]. Physiologia Plantarum, 2021, 171(1):161—172.doi: 10.1111/ppl.13244.
|
[11] |
|
|
Li C L. Fine mapping and cloning of resistance gene to northern corn leaf blight in tropical maize germplasm CML493[D]. Changchun: Jilin Agricultural University, 2021.
|
[12] |
陈尘. 丹参茉莉素信号通路关键成员COI1基因功能研究[D]. 西安: 陕西师范大学, 2017.
|
|
Chen C. Study on the function of COI1 gene,a key member of Jasmonate signaling pathway in Salvia miltiorrhiza[D]. Xi'an: Shaanxi Normal University, 2017.
|
[13] |
|
|
Liu X Y. Functional analysis of key genes AtSLO8, GRP23, ZmPPR21,and ZmPPR26 in growth and development of Arabidopsis and maize[D]. Jinan: Shandong University, 2022.
|
[14] |
|
|
Han L J. Study on transcript-level regulation of cellobiohydrolase Cel7A and its enzymatic catalysis in trichoderma reesei[D]. Jinan: Shandong University, 2022.
|
[15] |
|
|
Zhang X T. Preliminary analysis of drought tolerance function of ZmRING-93 in maize[D]. Jingzhou: Yangtze University, 2023.
|
[16] |
|
|
Ren Z J. Obtainment and glyphosate tolerance analysis of mAM79 transgenic maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
|
[17] |
|
|
Fang C W. ZmACOS5 and ZmMs13/ABCG2a regulate the anther and pollen development in maize[D]. Beijing: University of Science and Technology Beijing, 2023.
|
[18] |
谭燕华. 转植酸酶基因玉米比较蛋白质组学研究[D]. 海口: 海南大学, 2017.
|
|
Tan Y H. Comparative proteomics of phytase-transgenic maize and its non-transgenic isogenic variety[D]. Haikou: Hainan University, 2017.
|
[19] |
|
|
Zheng B. Effects of difference in ear leaf light environment of densely planted summer maize on its photosynthetic performance and proteomics analysis[D]. Taian: Shandong Agricultural University, 2022.
|
[20] |
|
|
Yan T L, He Y, Ma L Y, Wen A X, Qian F, Zhou W M, Jiang Y R, Rong J K. Alleviative effect of exogenous calcium ions on growth physiology of different senescence types of wheat seedlings under salt stress[J]. Journal of Zhejiang A&F University, 2023, 40(5):991—998.
|
[21] |
|
|
Zhang B. Functional analysis of soybean GmPP2C89 gene under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4): 20—27.
|
[22] |
黄旭升, 周雅莉, 史先飞, 高宇, 董书言, 蔡桂萍, 李润植, 王计平. 紫苏bZIP转录因子全基因组鉴定及对非生物胁迫的响应分析[J]. 植物生理学报, 2023, 59(7):1383—1397.doi: 10.13592/j.cnki.ppj.100454.
|
|
Huang X S, Zhou Y L, Shi X F, Gao Y, Dong S Y, Cai G P, Li R Z, Wang J P. Genome-wide characterization and abiotic stress response analysis of bZIP transcription factors in Perilla frutescens[J]. Plant Physiology Journal, 2023, 59(7):1383—1397.
|
[23] |
|
|
Li T. Identification and functional analysis of stearoyl-ACP dehydrogenase gene CeSAD from special oil crops of Cyperus esculentus[D]. Taigu: Shanxi Agricultural University, 2022.
|