[1] |
|
|
Cao X, Meng Q L, Liu J X, Li X J, Bu H Y, Ren J, Zhang G, Ma L G, Zhao J. The identification of resistance of different sunflower varieties to sunflower Verticilium wilt in fields[J]. Crops, 2014(1):67-72.
|
[2] |
|
|
Yin H Q, Wei B, Fang S Y, Liu Y T. Occurrence regularity and control of sunflower Verticillium wilt in Xinjiang[J]. Xinjiang Farm Research of Science and Technology, 2015, 38(3):38-39.
|
[3] |
|
|
Liu J X, Shan J J, Zeng B A, Ma Y C. Occurrence and control of sunflower Verticillium wilt in Ningxia[J]. Seed Science & Technology, 2016, 34(10):94-95.
|
[4] |
|
|
Cao L X, Xu L M, Yun X P, Bai Q J. Occurrence of main diseases and pests on sunflower in inner Mongolia and some suggestion for future research[J]. Inner Mongolia Agricultural Science and Technology, 2009, 37(6):83-85.
|
[5] |
Huisman O C. Interrelations of root growth dynamics to epidemiology of root-invading fungi[J]. Annual Review of Phytopathology, 1982, 20:303-327.doi: 10.1146/annurev.py.20.090182.001511.
URL
|
[6] |
|
|
Liu H Y, Yao J, Zhang R F, Wang W, Yu X, Wang Q. Analysis of soil microbial diversity in cotton fields differing in occurrence of cotton Verticillium wilt in Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(5):1619-1629.
|
[7] |
|
|
Jia S. Resistance identification of sunflower varieties under field condition and rotation with Gramineae to reduce the occurrence of sunflower Verticillium wilt[D]. Hohhot: Inner Mongolia Agricultural University,2021.
|
[8] |
|
|
Zhang Y J, Sun W M, Sun T, Wang J. Control techniques of sunflower Verticillium wilt[J]. Rural Science and Technology, 2018(7):99-100.
|
[9] |
Bagg A, Neilands J B. Ferric uptake regulation protein acts as a repressor,employing iron(Ⅱ)as a cofactor to bind the operator of an iron transport operon in Escherichia coli[J]. Biochemistry, 1987, 26(17):5471-5477.doi: 10.1021/bi00391a039.
pmid: 2823881
|
[10] |
Ogawa T, Bao D H, Katoh H, Shibata M, Pakrasi H B, Bhattacharyya-Pakrasi M. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803,a photosynthetic organism[J]. The Journal of Biological Chemistry, 2002, 277(32):28981-28986.doi: 10.1074/jbc.M204175200.
URL
|
[11] |
Askwith C C, de Silva D, Kaplan J. Molecular biology of iron acquisition in Saccharomyces cerevisiae[J]. Molecular Microbiology, 1996, 20(1):27-34.doi: 10.1111/j.1365-2958.1996.tb02485.x.
|
[12] |
Mei B, Budde A D, Leong S A. sid1,a gene initiating siderophore biosynthesis in Ustilago maydis:molecular characterization,regulation by iron,and role in phytopathogenicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(3):903-907.doi: 10.1073/pnas.90.3.903.
pmid: 8430103
|
[13] |
Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon B G. NPS6,encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism,is a conserved virulence determinant of plant pathogenic ascomycetes[J]. The Plant Cell, 2006, 18(10):2836-2853.doi: 10.1105/tpc.106.045633.
URL
|
[14] |
Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kämper J, Müller P, Kahmann R. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis[J]. The Plant Cell, 2006, 18(11):3332-3345.doi: 10.1105/tpc.106.043588.
URL
|
[15] |
Rehman L, Su X F, Li X K, Qi X L, Guo H M, Cheng H M. FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae[J]. Current Genetics, 2018, 64(3):645-659.doi: 10.1007/s00294-017-0780-x.
URL
|
[16] |
Kubicek C P, Starr T L, Glass N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi[J]. Annual Review of Phytopathology, 2014,52:427-451.doi: 10.1146/annurev-phyto-102313-045831.
|
[17] |
Mathioni S M, Bel A, Rizzo C J, Dean R A, Donofrio N M. Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses[J]. BMC Genomics, 2011,12:49.doi: 10.1186/1471-2164-12-49.
|
[18] |
Wegner A, Casanova F, Loehrer M, Jordine A, Bohnert S, Liu X Y, Zhang Z G, Schaffrath U. Gene deletion and constitutive expression of the pectate lyase gene 1( MoPL1)lead to diminished virulence of Magnaporthe oryzae[J]. Journal of Microbiology, 2022, 60(1):79-88.doi: 10.1007/s12275-022-1074-7.
pmid: 34964944
|
[19] |
Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants[J]. Molecular Plant-Microbe Interactions, 2003, 16(4):360-367.doi: 10.1094/MPMI.2003.16.4.360.
|
[20] |
崔佳, 赵丰舟, 刘震, 曲建楠, 刘铜, 左豫虎. 玉米弯孢叶斑病菌多聚半乳糖醛酸酶 Clpg1基因功能验证[J]. 植物保护, 2019, 45(6):163-169,184.doi: 10.16688/j.zwbh.2018485.
|
|
Cui J, Zhao F Z, Liu Z, Qu J N, Liu T, Zuo Y H. Functional verification of polygalacturonase Clpg1 gene in Curvularia lunata causing maize Curvalaria leaf spot[J]. Plant Protection, 2019, 45(6):163-169,184.
|
[21] |
路媛媛. 铁离子通道关键酶基因ClNPS6和ClFtr1调控玉米弯孢叶斑病菌致病力的分子机制[D]. 沈阳: 沈阳农业大学, 2018.
|
|
Lu Y Y. Molecular mechanism of CLNPS6 and ClFtr1 regulating pathogenicity in Curvularia lunata[D]. Shenyang: Shenyang Agricultural University, 2018.
|
[22] |
Flood J, Isaac I, Milton J M. Reactions of some cultivars of Lucerne to various isolates of Verticillium albo- atrum[J]. Plant Pathology, 1978, 27(4):166-169.doi: 10.1111/j.1365-3059.1978.tb01109.x.
|
[23] |
Mor H, Kashman Y, Winkelmann G, Barash I. Characterization of siderophores produced by different species of the dermatophytic fungi Microsporum and Trichophyton[J]. Biometals, 1992, 5(4):213-216.doi: 10.1007/BF01061220.
URL
|
[24] |
Riccombeni A, Butler G. Role of genomics and RNA-seq in studies of fungal virulence[J]. Current Fungal Infection Reports, 2012, 6(4):267-274.doi: 10.1007/s12281-012-0104-z.
URL
|
[25] |
Liu T, Liu L X, Jiang X, Hou J M, Fu K H, Zhou F H, Chen J. Agrobacterium-mediated transformation as a useful tool for the molecular genetic study of the phytopathogen Curvularia lunata[J]. European Journal of Plant Pathology, 2010, 126(3):363-371.doi: 10.1007/s10658-009-9541-0.
URL
|
[26] |
Park Y S, Kim J H, Cho J H, Chang H I, Kim S W, Paik H D, Kang C W, Kim T H, Sung H C, Yun C W. Physical and functional interaction of FgFtr1-FgFet1 and FgFtr2-FgFet2 is required for iron uptake in Fusarium graminearum[J]. The Biochemical Journal, 2007, 408(1):97-104.doi: 10.1042/BJ20070450.
URL
|
[27] |
Egan M J, Wang Z Y, Jones M A, Smirnoff N, Talbot N J. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(28):11772-11777.doi: 10.1073/pnas.0700574104.
pmid: 17600089
|
[28] |
Liu M F, Lin L, Gebremariam T, Luo G, Skory C D, French S W, Chou T F, Edwards J E, Ibrahim A S. Fob1 and Fob2 proteins are virulence determinants of Rhizopus oryzae via facilitating iron uptake from ferrioxamine[J]. PLoS Pathogens, 2015, 11(5):e1004842.doi: 10.1371/journal.ppat.1004842.
URL
|